12. Circumstellar Matter Monte Carlo Radiation Transfer I

- Monte Carlo "Photons" and interactions
- Sampling from probability distributions
- Optical depths, isotropic emission, scattering

<section-header><section-header> Monte Carlo Basics Emit energy packet, hereafter a "photon" Photon travels some distance Something happens... **Total Provide the state of the stateo**

Photon Packets

If the total input luminosity is *L*, then each photon packet carries energy $E_i = L \Delta t / N$, where *N* is the number of Monte Carlo photons. A Monte Carlo photon represents N_{γ} real photons, where $N_{\gamma} = E_i / hv_i$. So, a Monte Carlo photon packet moving along direction specified by θ will contribute to the specific intensity:

Choosing a Random Optical Depth

 $P(\tau) = \exp(-\tau)$, i.e., photon travels τ before interaction

$$\xi = \int_{0}^{\tau} e^{-\tau} d\tau = 1 - e^{-\tau} \Longrightarrow \tau = -\log(1 - \xi)$$

Since ξ is in range [0,1], then (1- ξ) is also in range [0,1], so we may write:

$$\tau = -\log \xi$$

We find the physical distance, *L*, that the photon has traveled from:

$$\tau = \int_{0}^{L} n \, \sigma \, \mathrm{d}s$$

Random Isotropic Direction

Solid angle is $d\Omega = \sin \theta \, d\theta \, d\phi$, we want to choose (θ, ϕ) so they fill in PDFs for θ and ϕ . $P(\theta)$ normalized over $[0, \pi]$, $P(\phi)$ normalized over $[0, 2\pi]$:

 $P(\theta) = \frac{1}{2} \sin \theta$ $P(\phi) = 1 / 2\pi$

Using fundamental principle from above:

$\xi = \int_{0}^{\theta} P(\theta) d\theta = \frac{1}{2} \int_{0}^{\theta} \sin \theta d\theta = \frac{1}{2} (\cos \theta - 1)$	$\theta = \cos^{-1}(2\xi)$
$\xi = \int_{0}^{\phi} P(\phi) \mathrm{d}\phi = \frac{1}{2\pi} \int_{0}^{\phi} \mathrm{d}\phi = \frac{\phi - 1}{2\pi}$	$\phi = 2\pi \xi$

Use this formula for emitting photons isotropically from a point source, or for choosing a scattering direction for isotropic scattering.

Albedo

When photon gets to interaction location at the randomly chosen optical depth, τ , we must decide whether the photon is scattered or absorbed. We use the *albedo* or *scattering probability*. It is the ratio of scattering to total opacity:

$$a = \frac{\sigma_s}{\sigma_s + \sigma_A}$$

To decide if a photon is scattered we choose a random number in the range [0, 1] and scatter if $\xi < a$, otherwise the photon is absorbed.

We now have the tools required to write a Monte Carlo radiation transfer program for isotropic scattering in a constant density slab...