2. Radiation Field Basics |

e Rutten: 2.1
» Basic definitions of intensity, flux
» Energy density, radiation pressure

Specific Intensity
|dE, =1, cosfdAdtdv dQ

Pencil beam of radiation at position r, direction n, carrying energy
dE,, passing through area dA, between thetimest and t + dt, in the
frequency band betweenv and v + dv.

sisnormal to dA

Unitsof |,: Im2/s/Hz/sr
(ergs/cm?/s/HZ/sr)




.

No sources or sinks of radiation. Pencil beam of radiation passing
through dA at pand dA’ a p’. Radiant energy passing through both

aressis the same:

[dE, =1, cosfdAdtdvdQ = dE, = I, cos6 dA dtdv d' |

Solid angle dQ subtended by dA’ at p, dQ’ subtended by dA at p’:
ldQ =dA'cosd /1% ;dQ'= dAcosg/r?| Therefore:

Specific intensity independent of distance when no sources or sinks.

Solar Limb Darkening

Assume plane parallel atmosphere
Measure | at different positions on solar disk => get (0)




Mean Intensity

3, :%Tjudg =%Tj02” [71,sin6dadg

J, isavery important quantity. It determineslevel populations
and ionization state throughout atmosphere. Likel,, itisa

function of position. For aplane parallel atmosphere (no ¢
dependence) with i = cos 6:

_ 1 : 1
J,(2) _Ej|V(z,9)2nsn9d9_Ej_llv(z,y)dy‘

WEe'll later use moments of theradiation field. J, isthe 0" moment

Moment operator M operating on f : |M‘“)[f] :%J'_llf u" d/,1|

What is J, at distancer from astar with uniform specific intensity
l. acrossits surface?

I=1. for 0<0<86, (ML <p<1l)
=0 for 0> 0. (M <)

1
:—I I d,u— 11, (1 ,U) w isthe dilution factor

At larger, w = R%/4r2
= %(1 J1- Rzlr) wl,




Flux

The flux enables us to calculate the total energy, E, passing through
asurfacein agiventime, i.e., integrated over al directions. The
energy transport can be positive or negative.

E = [dE, do :dvdt_flv([,g,t)ﬁ-d_AdQ‘

Monochromatic Flux, F, : The net flow of radiant energy per second
through an area dA in time dt in frequency range dv.

3 :J.|VCOS(9dQ :IOZH IOHIVCOSQSinede(U

Thisis used for specifying the energetics of radiation through stellar
interiors, atmospheres, ISM, etc. In principle, flux is avector.

In stellar atmospheres, the outward radial direction is alwaysimplied
positive, so that

22 . 2 1T .
F (2 =_[O _[O IVcos«6’31n6’d6’d(p+_|'0 LIZIVCOSHSIanHd(p
2w (2 5 2 e .
=[" [ 1,cosfsingdade~[" [ 1,(7-6)cosGsindd6de
=1, (2-%,(2

With both the outward flux, ‘F,*, and the inward flux, F,~, positive.
Isotropic radiation has F,* = F,- =, and ‘F, = 0. Axisymmetry:

F(2)= 2nj0"| _cosfsinfdady

= ZHI:I , A - 277.[0_1I , Mau
=% (9-F (2




The flux emitted by a star per unit area of its surfaceis

F, = F,; =1, Pwherel Fistheintensity, averaged over the apparent
stellar disk, received by an observer. Thisequality iswhy that flux
isoftenwrittenas T = F, sothat F = IF, with F called the
Astrophysical Flux.

This explains the often confusing factors of Ttthat are floating about
in definitions of flux:

F =Monochromatic Flux or just the Flux; F = Astrophysical Flux
They arerelated by - = F.

In terms of moments of the radiation field, the first moment is
defined as the Eddington Flux, H, . For plane parallel geometry:

H =—|I cos.t?dQ:i:—”:%.[_1 IV,ud,u‘

Stellar Luminosity

Flux = energy/second per area
Luminosity = energy/second

L, =F A =4nR’rml,
I |

Assume, = B, and integrate:

||_ = [L, dv = 47R? [ B, dv = 4R’ 0T4|




Unresolved Sources

Relate energy observed to ¥, at stellar surface:

Energy received per detector area, from anulus:

dw = solid angle of anulus
Anulusarea(r = R. sin 0):

> IdS=2ﬂr dr =2ﬂR?,ud,u|

dw=dS/D?
> Integrate over w:

1
f =2m(R/ D)Zj (R, i, v)udu
0

=(R /D)*F(R,v)

a. = angular diameter =1 F(R,v)
Unresolved => measure flux s
Inverse square law. Know a. , get absolute flux at star

Energy Density

The energy flow in abeam of radiation isIdEV =1, COSHdAdthdQI

n The flow has velocity ¢ (photons) and

0 travelsadistancedsin timedt = ds/c

dA through volume dV = dA ds cos 6. Thus,
each beam carriesdE, = (1/c) |, dQ dV.
If multiple beams pass through a small

ds=cdt volume AV, integration over AV and over

all beam directions gives the radiant
energy E, dv contained in AV across
bandwidth dv as:

dv

|EVdV:i'IAV [ 1, dvda dvl




For sufficiently small AV, the intensity is homogeneous, so the
two integrations (V, Q) are independent. The energy density is

1
uV—EjIVdQ‘

Radiation Pressure

Each photon has momentum p = hv/c. Component of momentum
normal to asolid wall per time per areais

_1dE, cosé
P e dAdt

Re-writein terms of |, and integrating over solid angle gives:

p=hv/c

P, =EJ.IVCOSZHdQ‘
C

dA Isotropic radiation has p, = u,/3.
Radiation pressure is analogous to
gas pressure, being the pressure of
the photon gas.

hv/c cos©




