2. Radiation Field Basics I

- Rutten: 2.1
- Basic definitions of intensity, flux
- Energy density, radiation pressure

Specific Intensity

$$
\mathrm{d} E_{v}=I_{v} \cos \theta \mathrm{~d} A \mathrm{~d} t \mathrm{~d} v \mathrm{~d} \Omega
$$

Pencil beam of radiation at position \mathbf{r}, direction $\underline{\boldsymbol{n}}$, carrying energy $\mathrm{d} E_{\mathrm{v}}$, passing through area $\mathrm{d} A$, between the times t and $t+\mathrm{d} t$, in the frequency band between v and $v+d v$.

$\underline{\boldsymbol{s}}$ is normal to $\mathrm{d} A$
Units of $I_{\mathrm{v}}: \mathrm{J} / \mathrm{m}^{2} / \mathrm{s} / \mathrm{Hz} / \mathrm{sr}$ ($\mathrm{ergs} / \mathrm{cm}^{2} / \mathrm{s} / \mathrm{Hz} / \mathrm{sr}$)

No sources or sinks of radiation. Pencil beam of radiation passing through dA at p and dA' at p '. Radiant energy passing through both areas is the same:

$$
\mathrm{d} E_{v}=I_{\nu} \cos \theta \mathrm{d} A \mathrm{~d} t \mathrm{~d} \nu \mathrm{~d} \Omega=\mathrm{d} E_{v}^{\prime}=I_{\nu}^{\prime} \cos \theta^{\prime} \mathrm{d} A^{\prime} \mathrm{d} t \mathrm{~d} v \mathrm{~d} \Omega^{\prime}
$$

Solid angle $\mathrm{d} \Omega$ subtended by $\mathrm{d} A^{\prime}$ at $p, \mathrm{~d} \Omega^{\prime}$ subtended by $\mathrm{d} A$ at p^{\prime} :

$$
\mathrm{d} \Omega=\mathrm{d} A^{\prime} \cos \theta^{\prime} / r^{2} ; \mathrm{d} \Omega^{\prime}=\mathrm{d} A \cos \theta / r^{2} \quad \text { Therefore: } \quad I_{v}=I_{v}^{\prime}
$$

Specific intensity independent of distance when no sources or sinks.

Solar Limb Darkening

Assume plane parallel atmosphere
Measure I at different positions on solar disk => get $I(\theta)$

Mean Intensity

$$
J_{v}=\frac{1}{4 \pi} \int I_{\nu} \mathrm{d} \Omega=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} I_{\nu} \sin \theta \mathrm{d} \theta \mathrm{~d} \phi
$$

J_{v} is a very important quantity. It determines level populations and ionization state throughout atmosphere. Like I_{v}, it is a function of position. For a plane parallel atmosphere (no ϕ dependence) with $\mu=\cos \theta$:
$J_{v}(z)=\frac{1}{4 \pi} \int I_{v}(z, \theta) 2 \pi \sin \theta \mathrm{~d} \theta=\frac{1}{2} \int_{-1}^{1} I_{v}(z, \mu) \mathrm{d} \mu$
We'll later use moments of the radiation field. J_{v} is the $0^{\text {th }}$ moment

$$
\text { Moment operator M operating on } f: \quad \mathbf{M}^{(n)}[f]=\frac{1}{2} \int_{-1}^{1} f \mu^{n} \mathrm{~d} \mu
$$

What is J_{v} at distance r from a star with uniform specific intensity I_{*} across its surface?

$$
\begin{array}{llll}
I=I_{*} & \text { for } & 0<\theta<\theta_{*} & \left(\mu_{*}<\mu<1\right) \\
I=0 & \text { for } & \theta>\theta_{*} & \left(\mu<\mu_{*}\right)
\end{array}
$$

$$
\begin{aligned}
& J=\frac{1}{2} \int_{\mu_{*}}^{1} I \mathrm{~d} \mu=\frac{1}{2} I_{*}\left(1-\mu_{*}\right) \\
& J=I_{*} \frac{1}{2}\left(1-\sqrt{1-R_{*}^{2} / r^{2}}\right)=w I_{*}
\end{aligned}
$$

w is the dilution factor
At large $r, w=R^{2} / 4 r^{2}$

Flux

The flux enables us to calculate the total energy, \boldsymbol{E}, passing through a surface in a given time, i.e., integrated over all directions. The energy transport can be positive or negative.

$$
E=\int \mathrm{d} E_{v} \mathrm{~d} \Omega=\mathrm{d} \nu \mathrm{~d} t \int I_{v}(\underline{r}, \underline{n}, t) \underline{\hat{n}} \bullet \underline{\mathrm{~d} A} \mathrm{~d} \Omega
$$

Monochromatic Flux, \mathcal{F}_{v} : The net flow of radiant energy per second through an area $\mathrm{d} A$ in time $\mathrm{d} t$ in frequency range $\mathrm{d} v$.

$$
\mathcal{F}_{\nu}=\int I_{\nu} \cos \theta \mathrm{d} \Omega=\int_{0}^{2 \pi} \int_{0}^{\pi} I_{\nu} \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi
$$

This is used for specifying the energetics of radiation through stellar interiors, atmospheres, ISM, etc. In principle, flux is a vector.

In stellar atmospheres, the outward radial direction is always implied positive, so that

$$
\begin{aligned}
\mathcal{F}_{v}(z) & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \quad I_{\nu} \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi+\int_{0}^{2 \pi} \int_{\pi / 2}^{\pi} I_{\nu} \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \quad I_{\nu} \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi-\int_{0}^{2 \pi} \int_{\pi / 2}^{\pi} I_{v}(\pi-\theta) \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \\
& \equiv \mathcal{F}_{v}^{+}(z)-\mathcal{F}_{v}^{-}(z)
\end{aligned}
$$

With both the outward flux, $\mathcal{F}_{v}{ }^{+}$, and the inward flux, $\mathcal{F}_{\mathrm{v}}{ }^{-}$, positive. Isotropic radiation has $\mathcal{F}_{\mathrm{v}}{ }^{+}=\mathcal{F}_{\mathrm{v}}{ }^{-}=\pi I_{\mathrm{v}}$ and $\mathcal{F}_{\mathrm{v}}=0$. Axisymmetry:

$$
\begin{aligned}
\mathcal{F}_{v}(z) & =2 \pi \int_{0}^{\pi} I_{\nu} \cos \theta \sin \theta \mathrm{d} \theta \mathrm{~d} \phi \\
& =2 \pi \int_{0}^{1} I_{\nu} \mu \mathrm{d} \mu-2 \pi \int_{0}^{-1} I_{\nu} \mu \mathrm{d} \mu \\
& =\mathcal{F}_{v}^{+}(z)-\mathcal{F}_{v}^{-}(z)
\end{aligned}
$$

The flux emitted by a star per unit area of its surface is $\mathcal{F}_{v}=\mathcal{F}_{\mathrm{v}}{ }^{+}=\pi I_{\mathrm{v}}{ }^{*}$ where $I_{v}{ }^{*}$ is the intensity, averaged over the apparent stellar disk, received by an observer. This equality is why that flux is often written as $\pi F=\mathcal{F}$, so that $F=I^{*}$, with F called the Astrophysical Flux.

This explains the often confusing factors of π that are floating about in definitions of flux:
$\mathcal{F}=$ Monochromatic Flux or just the Flux; $F=$ Astrophysical Flux They are related by $\pi F=\mathcal{F}$.

In terms of moments of the radiation field, the first moment is defined as the Eddington Flux, H_{v}. For plane parallel geometry:

$$
H_{v} \equiv \frac{1}{4 \pi} \int I_{v} \cos \theta \mathrm{~d} \Omega=\frac{\mathcal{F}_{v}}{4 \pi}=\frac{F_{v}}{4}=\frac{1}{2} \int_{-1}^{1} I_{v} \mu \mathrm{~d} \mu
$$

Stellar Luminosity

Flux = energy/second per area
Luminosity = energy/second

$$
L_{v}=\mathcal{F}_{v} A_{*}=4 \pi R_{*}^{2} \pi I_{v}
$$

Assume $I_{\mathrm{v}}=B_{\mathrm{v}}$ and integrate:

$$
L=\int L_{v} \mathrm{~d} v=4 \pi R_{*}^{2} \pi \int B_{v} \mathrm{~d} v=4 \pi R_{*}^{2} \sigma T^{4}
$$

Unresolved Sources

Relate energy observed to \mathcal{F}_{v} at stellar surface:
Energy received per detector area, from anulus: $\mathrm{d} f_{v}=I_{v} \mathrm{~d} \omega$ $\mathrm{d} \omega=$ solid angle of anulus
Unresolved => measure flux

Anulus area $\left(r=R_{*} \sin \theta\right)$:

$$
\mathrm{d} S=2 \pi r \mathrm{~d} r=2 \pi R_{*}^{2} \mu \mathrm{~d} \mu
$$

$$
\mathrm{d} \omega=\mathrm{d} S / D^{2}
$$

Integrate over ω :

$$
\begin{aligned}
f_{v} & =2 \pi\left(R_{*} / D\right)^{2} \int_{0}^{1} I\left(R_{*}, \mu, v\right) \mu \mathrm{d} \mu \\
& =\left(R_{*} / D\right)^{2} \mathcal{F}\left(R_{*}, v\right) \\
& =\frac{1}{4} \alpha_{*}^{2} \mathcal{F}\left(R_{*}, v\right)
\end{aligned}
$$

Inverse square law. Know α_{*}, get absolute flux at star

Energy Density

The energy flow in a beam of radiation is $\mathrm{d} E_{v}=I_{\nu} \cos \theta \mathrm{d} A \mathrm{~d} t \mathrm{~d} v \mathrm{~d} \Omega$

The flow has velocity c (photons) and travels a distance $\mathrm{d} s$ in time $\mathrm{d} t=\mathrm{d} s / c$ through volume $\mathrm{d} V=\mathrm{d} A \mathrm{~d} s \cos \theta$. Thus, each beam carries $\mathrm{d} E_{\mathrm{v}}=(1 / c) I_{\mathrm{v}} \mathrm{d} \Omega \mathrm{d} V$. If multiple beams pass through a small volume ΔV, integration over ΔV and over all beam directions gives the radiant energy $E_{v} \mathrm{~d} \nu$ contained in ΔV across bandwidth $\mathrm{d} v$ as:

$$
E_{V} \mathrm{~d} v=\frac{1}{c} \int_{\Delta V} \int_{\Omega} I_{v} \mathrm{~d} V \mathrm{~d} \Omega \mathrm{~d} v
$$

For sufficiently small ΔV, the intensity is homogeneous, so the two integrations (V, Ω) are independent. The energy density is

$$
u_{v}=\frac{1}{c} \int I_{v} \mathrm{~d} \Omega
$$

Radiation Pressure

Each photon has momentum $p=h v / c$. Component of momentum normal to a solid wall per time per area is

$$
\mathrm{d} p_{v}=\frac{1}{c} \frac{\mathrm{~d} E_{v} \cos \theta}{\mathrm{~d} A \mathrm{~d} t}
$$

Re-write in terms of I_{v} and integrating over solid angle gives:

$$
p_{v}=\frac{1}{c} \int I_{\nu} \cos ^{2} \theta \mathrm{~d} \Omega
$$

Isotropic radiation has $p_{v}=u_{\mathrm{v}} / 3$. Radiation pressure is analogous to gas pressure, being the pressure of the photon gas.

