
2. Radiation Field Basics I

• Rutten: 2.1

• Basic definitions of intensity, flux

• Energy density, radiation pressure

Specific Intensity

Ω= ddddcosd νθνν tAIE

Pencil beam of radiation at position r, direction n, carrying energy 
dEν, passing through area dA, between the times t and t + dt, in the 
frequency band between ν and ν + dν.

s is normal to dA

Units of Iν: J/m2/s/Hz/sr
(ergs/cm2/s/Hz/sr)
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No sources or sinks of radiation.  Pencil beam of radiation passing 
through dA at p and dA’ at p’ .  Radiant energy passing through both 
areas is the same:

Solid angle dΩ subtended by dA’  at p, dΩ’ subtended by dA at p’ :

Therefore: '
νν II =

p p’

Specific intensity independent of distance when no sources or sinks.

Solar Limb Darkening

θ

Assume plane parallel atmosphere
Measure I at different positions on solar disk => get I(θ)



Mean Intensity
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Jν is a very important quantity.  It determines level populations 
and ionization state throughout atmosphere.  Like Iν, it is a 
function of position.  For a plane parallel atmosphere (no φ
dependence) with µ = cos θ:
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We’ ll later use moments of the radiation field.  Jν is the 0th moment
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What is Jν at distance r from a star with uniform specific intensity 
I* across its surface?

R*

r

θ*

I*

I = I* for 0 < θ < θ* (µ* < µ < 1)
I = 0 for θ > θ* (µ < µ*)
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µµ w is the dilution factor
At large r, w = R2/4r2



Flux
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Monochromatic Flux, 
�

ν : The net flow of radiant energy per second 
through an area dA in time dt in frequency range dν.

The flux enables us to calculate the total energy, E, passing through 
a surface in a given time, i.e., integrated over all directions. The 
energy transport can be positive or negative.

Ω•=Ω= ddˆ),,(dddd AntnrItEE νν ν

This is used for specifying the energetics of radiation through stellar
interiors, atmospheres, ISM, etc.  In principle, flux is a vector.

In stellar atmospheres, the outward radial direction is always implied 
positive, so that
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With both the outward flux, 
�

ν
+, and the inward flux, 

�
ν

−, positive.  
Isotropic radiation has 

�
ν

+ = 
�

ν
− = πIν and 

�
ν = 0.  Axisymmetry:
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The flux emitted by a star per unit area of its surface is �
ν = 

�
ν

+ = πIν
∗ where Iν

∗ is the intensity, averaged over the apparent 
stellar disk, received by an observer.  This equality is why that flux 
is often written as πF = 

�
, so that F = I∗, with F called the 

Astrophysical Flux.

This explains the often confusing factors of π that are floating about 
in definitions of flux:�

= Monochromatic Flux or just the Flux; F = Astrophysical Flux
They are related by πF = 

�
.

In terms of moments of the radiation field, the first moment is 
defined as the Eddington Flux, Hν .  For plane parallel geometry:
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Stellar Luminosity
Flux = energy/second per area
Luminosity = energy/second

Assume Iν = Bν and integrate:
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Unresolved Sources

Anulus area (r = R* sin θ):

dω = dS/D2

Integrate over ω:
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Relate energy observed to 
�

ν at stellar surface:
Energy received per detector area, from anulus:
dω = solid angle of anulus
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α* = angular diameter
Unresolved => measure flux
Inverse square law.  Know α* , get absolute flux at star

r
R*

θ

dS

Energy Density
The energy flow in a beam of radiation is Ω= ddddcosd νθνν tAIE

The flow has velocity c (photons) and 
travels a distance ds in time dt = ds/c
through volume dV = dA ds cos θ. Thus, 
each beam carries dEν = (1/c) Iν dΩ dV.  
If multiple beams pass through a small 
volume ∆V, integration over ∆V and over 
all beam directions gives the radiant 
energy Eν dν contained in ∆V across 
bandwidth dν as: 
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For sufficiently small ∆V, the intensity is homogeneous, so the 
two integrations (V, Ω) are independent.  The energy density is

Ω= d
1

νν I
c
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Radiation Pressure
Each photon has momentum p = hν/c.  Component of momentum 
normal to a solid wall per time per area is 

Re-write in terms of Iν and integrating over solid angle gives:

dA

p = hν/c
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ds = c dt

Ω= dcos
1 2θνν I
c

p

Isotropic radiation has pν = uν/3.  
Radiation pressure is analogous to 
gas pressure, being the pressure of 
the photon gas.
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