5. Formal Solution of ERT

Ingredients to produce theoretical spectrum
Rutten: 4.1

Formal solution of plane-parallel ERT
Exponentia integrals and operators

Producing a Theoretical Spectrum

* Pure hydrogen atmosphere, T = 5600 K
Assume opacity independent of depth
Determine wavel ength dependent opacity
Determine temperature structure

Determine emergent intensity in optical
range 3000 A <A <8600 A
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For 912 <A <3646 canionizeout of n> 1: need Ny, N3, Ng,...
For 3646 <A <8206 canionizeout of n> 2: need N3, N,,...
For A > 8206 canionizeout of n>3: need N,,...

Hydrogen Bound-Free Opacity

Level populations for T = 5600 K

Use Boltzmann equation to get populations
of Hlevelsn=2, 3,and 4

» Use Kramer’s opacity formulato get
wavel ength dependence




Calculate Level Populations

Use Boltzmann distribution, g, = n:

Ny _ 90
1 1
=n’ exp[-AE,, /KT]

= 112 10l ~2Eumn(eV)5040/T]

exp[=(xy = X,) /KT]

Use Rydberg formula: AE,, = x (1-1/n?), x =13.6 eV

N, /N, =4x107°%% =2 6x107
N, /N, =9x10™*% =12x10™
N, /N, =16x 107724 =54x107™"

Calculate Opacity

From L3, Kramer’'s opacity for hydrogen b-f cross-section (m?)

4
ol = 2.815><1025%gbf forv =y,

=1.044x10° 2/n° =g, I n®

With A in A. Tota opacity = sum of absorption coefficients from
all levelsthat can be ionized by photon at given A, times popul ation

of level

a’ =N,0,+N,0,+N,0, forA<3647A
=N,0,+N, 0, for 3648A < A < 8206A
=N,o, for A 2 8207A

Ignore contributions from levelsn > 4




Calculate Opacity

For A <3646 A there's enough energy to ionize out of n > 1.

a’ =N,o,+N,0,+N, 0,

=N, 0, (1/32N, /N, +1/ 243N, /N, +1/1024N, / N,)
=8.2x10"N, g,

For 3647 A <A <8206 A, canionize out of n> 2

a’ =N, 0, *(1/ 243N,/ N, +1/1024 N,/ N,)
=55x10"°N, g, A

For A > 8207 A, canionizeout of n> 3

|avbf =N, 0, A(1/1024N, / N,) =5.3x10™“N, g, /13|

Calculate Opacity

« Anticipating L7, Gray Atmosphere gives
solution for T(1), so we'll need some

reference A for T: normalize opacity to
a (5000 A):

a™ (5000A) = 5.5x10°N, o, (5000)°
v 1~0

a” | a (5000A) =149(A/5000)° A <3646A

= (1 /5000)? 3646 A < A < 8206 A
= 0.096(A /5000)° A =8206A
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Have opacity, now need to solve ERT to get temperature
structure and emergent intensity...

Formal Solution of ERT

The general equation of radiation transfer is:
|le ol, dt  al, 141, ol
= + = vy

g V:jv_avlv

ds odtds ds cot s
where sisthe geometrical path along aray and
‘mv _ol, dx_ ol dy al,odz

0s o0xds o0y ds 0zds

Spherical Geometry: Assuming steady state (time independence),
adopting polar coordinates with dr = cos© dsand rd6 =-sin 8 ds
and taking a spherical star with azimuthially symmetric intensity
we get:

al, sn@al,  al, 1-429l, .
+ =H + _Jv_avlv

dl
L = cosf
‘ 0s or r 06 or r ou




2
and with S, = j/a, weget: | & 9L, [ 1=H a'“:%—
K,0 0r  K,pr Ou

This equation must be solved for stars with extended atmospheres.
It is very difficult to solve and only recently have stellar atmosphere
calculations been performed for this geometry. Most oftenitis
assumed that stellar atmospheres are thin compared to their radius,
S0 that the plane parallel approximation holds.

Plane Parallel Geometry: Thisis the approximation that we will
use for the remainder of the discussion of “traditional” radiation
transfer theory. In this approximation dé/dr = 0 and, with the radial

optical depth, dt, = -k, pdr, we get

v

di
I/:|_
My v %‘

Z-V

For Sun: scaleheight, h ~ 150 km,
radius R~ 10° km
We will now spend some time on finding solutions to this equation...

ERT: Moment Equations

Due to the complexity of the ERT, approximations are made to
allow us to simplify the equations and find semi-analytic solutions.

If we assume the source function, S,, is isotropic we may form
various moment equations. First, perform angle averaging and apply

1 1
IMIdQ=Zde|

1¢ d 1 1
= vdu==[1 du-=[Sd
2£”drv # Z_Ilvu Z_Ilsvu
dH,(7,)
— v vZi=73(r)- T
dT V(I/) S/(l/)

v

_dH,(2)
dz

=k,03,(2) - ,05,(2)




If we multiply both sides by u before applying the angle averaging
we get:

1¢ ,d 1; 1%

= —Yduy== | duy—-= d

2_Ilﬂ " 2£””” z_jlﬂSVﬂ
dK (T ) “H, () 0 for isotropic S,
dr

v

If we substitute this into the previous moment equation we get

oK, (7,)

ar? =3,(1,)-8(7)

Formal Solution of ERT
,udl @4 _ T, 1) = S,(T)I—PS,ISO'[I’OpIC

dr
Multiply by integrating factor, exp(-t/p) (v-dependence implied):

12

(frv{ue””lv(r. W}=-5,(r) &

e, ]! =[S, (0) & dr

HEH (1, 1) = e (10, ) = =[S, (1) €74 dr

To

IV(T:L’,U) = e‘(fo—n)/lll V(TO’/’() _ l J‘ S/(T) e—(r—rl)/,u dr
)%

To

(o 17 o
=g (% 71)/ﬂ|v(r )+ = S/(T) e T u qr
|

L3
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0 (o — T/ = Optical Depth

Ty

Split into two regimes: Outward (p > 0), Inward (1 < 0). Boundary
conditions: T, = infty. No inward illumination, I,(u<0)=0

u>0: 1,(7, 221.[3/(1-) e WM 4

0

1% -
u<0: 1 (r,)=-=|S,(r) e"™*dr
] ﬂ!

Intensity measures the source function weighted by exp(-t/pt) along
the beam up to the point of interest.

Moment Equations, Exponentia Integrals, Operators

i [ T dr ¢ 2 dr
j. |V(T1/J) ﬂn d/j = J.lu” d/JJ-SV(T) Al 7 + J'/jn d/,l.[SV(T) g rml-u 7
-1 0 T 1 T

=[S,0) Epalt-0)dr + ([ §,(0) Epult-1)clr

The exponential integrals E,, are defined by (Rutten 4.1.2)

0 _—xw 1
|En(X) = _[G;‘N—n dW=Jle‘X”’,u"‘l au
1 0 ﬂ

Tabulated in textbooks. For this course, we'll need approximations

at small T, so use 1
En(o)zi
n-1




Schwarzschild-Milne Equations

The Schwarzschild equation for the mean intensity:

3,0 =5 Lk

1 1
=S J8MEE-Da+Z[ S OEF-Hat

= [B@E(t-Thd

The Milne equation for the flux:
) B @)= i ()

1 =il
=2n1,(z,) pdu - 271, (z,)
0 0

=27 S,(4,) Eo(t, ~7,)k, ~ 27 S, (1) Eur, -,

Completing the intensity moments in terms of exponential
integrals, we get for the K, integral:

K,(5) = 5[ S 6B -7, Dt

Surface Vaues

The emergent intensity and flux at the stellar surface are:

0.1 = [S,(t,)e™ dr, |

F(0,.4) =27 S, (t,) Ey(, ) I,




Operators

We can write the above equations in terms of operators. For the
specific intensity we use the Laplace Transform:

|‘£1I;1{SV(TV)} EJ.SV(tv)e-Iw dTl/ //'I= I:(O,/J)

In stellar atmospheres theory an important operator is the classical
Lambda Operator, A\, defined by the RHS of the Schwarzschild egn:

I/\r{f(r)} s%jjf(r)Eiat—r Dot = J,I

The ® and x operators are:

|¢,{sv(tv)} =2 S ) E(, ~1,)¢t, -2 S1)E®@ ~t)d, = Fv(rv)l

[risen=2fseee -rw = a0




