
6. Analytic Solutions I

• Rutten: 4.1, 4.2

• Operators

• Eddington-Barbier

• Limb Darkening

• Diffusion approximation

• Rosseland Mean Opacity

• Eddington Approximation

Surface Values
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Schwarzschild-Milne Equations
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For a semi infinite atmosphere with no external illumination:



Operators
We can write the above equations in terms of operators.  For the 
specific intensity we use the Laplace Transform:
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In stellar atmospheres theory an important operator is the classical 
Lambda Operator, Λτ, defined by the RHS of the Schwarzschild eqn:
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The Φ and χ operators are:

Some Properties
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Lambda operator applied to Sgives J:



Analytic Solutions

Optically thick radiation transfer only has analytic solutions at 
large depth where LTE holds and the radiation field is very nearly 
isotropic.  In shallower, optically thinner layers, approximations 
are inevitable.  The most important one is the (first) Eddington 
Approximation, which we will work up to below.

Approximations are based on power law expansions of S(τ)

Recall Taylor-McLaurin series:

Expand at surface: τ0 = 0
Interior: pick some τ0 0
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Eddington-Barbier Approximation: This approximation for the 
emergent specific intensity is based on the polynomial expansion:

Approximations at the Surface
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which produces, using the linearity of operators (Tutorial Exercise):
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At the surface, the above are approximately given by:

These are the Eddington-Barbier Approximations for the emergent 
intensity, mean intensity, and net flux at the surface in the absence 
of external illumination (i.e., Iν

-(0)=0).  They are exact for a source 
function that is linear with optical depth Sν(τν) = a0+a1τν and are 
then easily found from the definitions of I, J, F using the boundary 
condition Iν

-(0)=0.
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Limb Darkening

θ

Towards limb, τ = µ is at a shallower depth.  If  S(τ) = a + b τ then…
I = S(τ = µ) = a + b µ , so I (Limb) < I (Center)

τ = µ = 1 τ = µ < 1
τ increases

Second Eddington Approximation: A homogeneous medium with 
Sν = a0 is known as a Lambert Radiator having Iν

+(0,µ) = Sν = a0 for 
all outward directions µ > 0. Also,  Jν (0) = Sν / 2 = a0 / 2 = Iν (0) / 2, 
Fν (0) = Sν  = Iν (0) = a0 and therefore Fν (0) = 2 Jν (0) = 4 Hν (0) or �

ν (0) = 2 π Jν (0).  The latter relation is called the Second Eddington 
Approximation.  It follows directly from the definition of astrophysical 
flux by setting:
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using the absence of incident radiation and recognizing that 
Jν(0) = 1/2< Iν

+(0,µ) > for the same reason.  This approximation is 
exact for a Lambert radiator, simply expressing that Fν (0) = Fν

+(0) 
Represents an average only over outward directions (µ > 0), while 
Jν(0) is an average over all µ.  In general it is a very coarse 
approximation.



Approximations at Large Depth
At large depths (τ >> 1) radiation transfer becomes simple because 
all scale lengths are larger than the photon mean free path.  So photons
are locally trapped in a nearly homogeneous environment even while 
randomly walking about via scattering.  The radiation field therefore 
approaches isotropy.  Also, the density is large enough that collisional 
photon destruction outweighs scattering.  The conditions therefore 
approach TE, making LTE a valid assumption.  Expanding Sν in a 
Taylor-McLaurin series gives:

Substitute into equation for I at arbitrary interior point τ of a semi 
infinite atmosphere:
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Substituting this into the formal solution for Iν and using
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The term in brackets [1 - …] goes to 1 for large τν.  Thus
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This holds for all directions –1 < µ < 1 when τν >> 1, and holds 
also for µ > 0 at smaller depth.

For τν >> 1 substituting the above in the formula for mean intensity:
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Using similar expressions for Fν and Kν, we get
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These expressions rapidly converge for τν >> 1, so at large depth 
we get:
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Here the isotropic component of the radiation field Jν is set by the 
value of the source function whereas the anisotropic component Fν is 
determined by the gradient dSν /dτν .  
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Diffusion Approximation: The Rosseland or Diffusion Approximation
holds sufficiently deep inside a star where Iν is nearly isotropic and 
where LTE holds so that Sν = Bν . 

The monochromatic flux is now expressed in the gradient of Bν in 
optical depth.  This equation has the general form of a diffusion 
process where the transported flux of a quantity equals the product 
of a diffusion coefficient and a spatial gradient in that quantity.



Rosseland Mean Extinction:  In order to recast the diffusion 
approximation into the familiar expression for the total flux 

�
as a 

function of the geometrical radial temperature gradient dT / dz, we 
use the Rosseland Mean Extinction coefficient:

Where κR(z) = αR(z)  / ρ(z).  It averages the extinction similarly to the 
formula for combining parallel resistors: 1/R = 1/R1 + 1/R2 + …  The 
extinction represents resistance to the photon flux which favours the 
more transparent spectral windows.  The Planck function temperature 
sensitivity, dBν /dT enters as a weighting function for the same reason.  
It produces larger flux from a given spatial temperature gradient at 
frequencies where it is large.

�

�

�

�
∞

∞

∞

∞

≡≡

0

0

0

0

d)d/d(

d)d/d()/1(
1

;

d)d/d(

d)d/d()/1(
1

ν

νκ

κ
ν

να

α
ν

νν

ν

νν

TB

TB

TB

TB

RR

The total energy flow is now given by:
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Where u is the total energy density defined before u = (4σ / c) T4.  
This diffusion equation is also called the radiation conduction equation.
It says a negative temperature gradient is required to let net radiative 
flux diffuse outwards through a star by thermal absorptions and 
re-emissions with a mean free photon path l = 1/ρ κR .  In the solar 
interior l is only a few millimetres, making the optical depth from the 
surface τν ~ 1011, so the diffusion approximations are very accurate.



The Eddington Approximation

Using the equations for J and K at large depth we get the First 
Eddington Approximation, often called the Eddington approximation
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Validity:  It is exact for isotropic radiation.  It is also exact, at any 
depth τν, when Iν(τ,µ) can be expanded in odd powers of µ, with all 
even coefficients ai = 0 in 
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This implies the Eddington approximation may hold for τν < 1, in 
contrast to the approximations at large depth and the diffusion 
equation which requires LTE and therefore only holds for τν > 1.


