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Schwarzschild-Milne Equations

For a semi infinite atmosphere with no external illumination:
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Operators

We can write the above equations in terms of operators. For the
specific intensity we use the Laplace Transform:
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In stellar atmospheres theory an important operator is the classical
Lambda Operator, A\, defined by the RHS of the Schwarzschild egn:
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The ® and x operators are:
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Analytic Solutions

Optically thick radiation transfer only has analytic solutions at
large depth where LTE holds and the radiation field is very nearly
isotropic. In shallower, optically thinner layers, approximations
areinevitable. The most important one isthe (first) Eddington
Approximation, which we will work up to below.

Approximations are based on power law expansions of 1)

Recall Taylor-McLaurin series: | f(r)=Ya, (r-1,)"
n=0

Expand at surface: 1,=0 a = f"(7)

Interior: pick some T, =,

Approximations at the Surface

Eddington-Barbier Approximation: This approximation for the
emergent specific intensity is based on the polynomial expansion:
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which produces, using the linearity of operators (Tutorial Exercise):
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At the surface, the above are approximately given by:
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These are the Eddington-Barbier Approximations for the emergent
intensity, mean intensity, and net flux at the surface in the absence
of external illumination (i.e., I, 1(0)=0). They are exact for a source
function that is linear with optical depth S,(t,) = a;+a,1, and are
then easily found from the definitions of 1, J, F using the boundary
condition I, (0)=0.




Limb Darkening

T=p=1

‘ / T increases
T:u<1l

Towardslimb, T = pisat ashalower depth. If S1) =a+ bTtthen...
|=S(t=pw)=a+bpu,sol (Limb) <I (Center)

Second Eddington Approximation: A homogeneous medium with

S = g, isknown as aLambert Radiator having I,*(O,n) = S, = a, for
all outward directionsp > 0. Also, J,(0) =S,/ 2=a,/2=1,(0)/ 2,
F,(0) =S, =1,(0) = a,and therefore F,, (0) =2J,(0) =4 H, (O) or
F,(©0) =2mJ, (0). Thelatter relation is called the Second Eddington
Approximation. It follows directly from the definition of astrophysical
flux by setting:
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using the absence of incident radiation and recognizing that

J,(0) = 1/2<1,*(0,u) > for the same reason. This approximation is
exact for a Lambert radiator, simply expressing that F,, (0) = F,*(0)
Represents an average only over outward directions (i > 0), while
J,(0) isan average over all p. Ingeneral it isavery coarse
approximation.




Approximations at Large Depth
At large depths (1 >> 1) radiation transfer becomes simple because
all scalelengths are larger than the photon mean free path. So photons
are locally trapped in a nearly homogeneous environment even while
randomly walking about via scattering. The radiation field therefore
approachesisotropy. Also, the density is large enough that collisional
photon destruction outwei ghs scattering. The conditions therefore
approach TE, making LTE avalid assumption. Expanding S, ina

Taylor-McLaurin series gives: 5 o = T 7
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Substitute into equation for | at arbitrary interior point T of a semi
infinite atmosphere:

p>0: 1,(r,p) =[S0 e dt/ p

p<0: 1, (1, 0)=~[S,(t) e dt/ p
0

Substituting this into the formal solution for |, and using
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Thetermin brackets[1- ...] goesto 1for larget,. Thus
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Thisholdsfor al directions—1 < p < 1 when 1, >> 1, and holds
also for u > 0 at smaller depth.
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For 1, >> 1 substituting the above in the formula for mean intensity:
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These expressions rapidly converge for 1, >> 1, so at large depth

we get:
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Here the isotropic component of the radiation field J, is set by the
value of the source function whereas the anisotropic component F,, is
determined by the gradient dS, /d, .

Diffusion Approximation: The Rosseland or Diffusion Approximation
holds sufficiently deep inside a star where |, is nearly isotropic and
where LTE holdsso that §, =B, .
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The monochromatic flux is now expressed in the gradient of B, in
optical depth. This equation has the general form of a diffusion
process where the transported flux of a quantity equals the product
of adiffusion coefficient and a spatial gradient in that quantity.




Rosseland Mean Extinction: In order to recast the diffusion
approximation into the familiar expression for the total flux Fasa
function of the geometrical radial temperature gradient dT / dz, we
use the Rosseland Mean Extinction coefficient:

j(l/av)(dBV /dT)dv j(1/KV)(dBV /dT)dv
1.9 1.5
T [ (B 1dn)dv [ (a8, /dT)dv
0 0

Wherekg(2) = ag(2) / p(2). It averages the extinction similarly to the
formulafor combining parallel resistors: /R=1/R, + YR, + ... The
extinction represents resistance to the photon flux which favours the
more transparent spectral windows. The Planck function temperature
sengitivity, dB, /dT enters as a weighting function for the same reason.
It produces larger flux from a given spatial temperature gradient at
frequencies whereit islarge.

Thetotal energy flow is now given by:
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Where u isthe total energy density defined beforeu = (40 / ¢) T4

This diffusion equation is also called the radiation conduction equation.
It says a negative temperature gradient is required to let net radiative
flux diffuse outwards through a star by thermal absorptions and
re-emissions with a mean free photon path | = 1/p K5 . In the solar
interior | is only afew millimetres, making the optical depth from the
surface 1, ~ 10%, so the diffusion approximations are very accurate.




The Eddington Approximation

Using the equations for J and K at large depth we get the First
Eddington Approximation, often called the Eddington approximation

|Kv(rv)=§Jv(m|

Validity: Itisexact for isotropic radiation. It isalso exact, at any
depth 1, when |,,(t,1) can be expanded in odd powers of y, with all

even coefficientsa. = 01in n _
A ||V(TV)=Z&(TV)#'|
i=0

Thisimplies the Eddington approximation may hold for T, <1, in
contrast to the approximations at large depth and the diffusion
equation which requires LTE and therefore only holds for t, > 1.




