7. Analytic Solutions II

- Rutten: 7.3
- Eddington two stream approximation
- Gray atmosphere
- Limb darkening
- Theoretical spectrum: temperature structure and emergent flux

Why Do Gray Atmosphere?

- Opacity independent of frequency
- Only true gray opacity is electron scattering
- Demonstrates radiative equilibrium
- Gives first guess at temperature structure
- Can relate to more general/realistic situations
- Can get exact solution: test approximate numerical techniques
- Can set exam questions...

Substitute
$$I_1$$
 and I_2 into integral expressions for J , H , K :

$$J(\tau) = \frac{1}{2} \int_{-1}^{1} I(\tau, \mu) d\mu = \frac{1}{2} \int_{0}^{1} I_1(\tau) d\mu + \frac{1}{2} \int_{-1}^{0} I_2(\tau) d\mu = \frac{1}{2} [I_1(\tau) + I_2(\tau)]$$

$$H(\tau) = \frac{1}{2} \int_{-1}^{1} I(\tau, \mu) \mu d\mu = \frac{1}{2} \int_{0}^{1} I_1(\tau) \mu d\mu + \frac{1}{2} \int_{-1}^{0} I_2(\tau) \mu d\mu = \frac{1}{4} [I_1(\tau) + I_2(\tau)]$$

$$K(\tau) = \frac{1}{2} \int_{-1}^{1} I(\tau, \mu) \mu^2 d\mu = \frac{1}{2} \int_{0}^{1} I_1(\tau) \mu^2 d\mu + \frac{1}{2} \int_{-1}^{0} I_2(\tau) \mu^2 d\mu = \frac{1}{6} [I_1(\tau) + I_2(\tau)]$$

The equations for *J* and *K* give the first Eddington approximation:

$$J(\tau) = 3K(\tau)$$

Surface condition $I_2(\tau = 0) = 0$ gives the second Eddington approx:

$$J(0) = I_1(0)/2, H(0) = I_1(0)/4 \Longrightarrow J(0) = 2H(0)$$

The major assumption in the gray atmosphere is that the opacity is independent of frequency: $d\kappa_v / dv = 0$. The ERT simplifies considerably since we can integrate over frequency.

$$\mu \frac{\mathrm{d}I(\tau,\mu)}{\mathrm{d}\tau} = I - S \qquad \text{where} \qquad I = \int_{0}^{\infty} I_{\nu} \,\mathrm{d}\nu \quad ; \quad S = \int_{0}^{\infty} S_{\nu} \,\mathrm{d}\nu$$

We now assume:

1. Opacity independent of frequency (see above) 2. Radiative equilibrium: Total radiative flux is constant throughout atmosphere: $dF / d\tau = 0$ 3. Atmosphere is in LTE: Hence $S_v(T) = B_v(T)$ and S(T) = B(T)A useful relation is the frequency integrated Planck function: $B(T) = \int_0^\infty B_v(T) dv = \frac{\sigma T^4}{\pi}$

Recall the Moment equations from L6. Be able to derive these.

$$\frac{\mathrm{d}H_{\nu}(\tau_{\nu})}{\mathrm{d}\tau_{\nu}} = J_{\nu}(\tau_{\nu}) - S_{\nu}(\tau_{\nu})$$
$$\frac{\mathrm{d}K_{\nu}(\tau_{\nu})}{\mathrm{d}\tau_{\nu}} = H_{\nu}(\tau_{\nu})$$
$$\frac{\mathrm{d}^{2}K_{\nu}(\tau_{\nu})}{\mathrm{d}\tau_{\nu}^{2}} = J_{\nu}(\tau_{\nu}) - S_{\nu}(\tau_{\nu})$$

Using the frequency integrated terms, the moment equations for the ERT now become:

 $\frac{\mathrm{d}H(\tau)}{\mathrm{d}\tau} = J(\tau) - S(\tau)$ $\frac{\mathrm{d}K(\tau)}{\mathrm{d}\tau} = H(\tau)$

Radiative equilibrium implies the flux is constant throughout the atmosphere, so $dH / d\tau = 0$, since H = F / 4.

This then gives $S(\tau) = J(\tau)$ and $K(\tau) = H(\tau + q)$, since $H(\tau) = H$ (constant) and *q* is a constant of integration.

Using the Eddington approximation, $J(\tau) = 3K(\tau)$, we get

$$J(\tau)=3H(\tau+q)$$

Using the second Eddington approximation, $J(\tau = 0) = 2H$, we get q = 2/3, which gives the Milne-Eddington approximation for a gray atmosphere:

$$S(\tau) \approx \frac{3}{4} \left(\tau + \frac{2}{3}\right) F$$

since F = 4H and S = J. Here $F = B = (\sigma/\pi)T_{\text{eff}}^4$.

The exact solution is usually written as:

$$S(\tau) = \frac{3}{4} [\tau + q(\tau)] F$$

where $q(\tau)$ is the *Hopf function* which varies slowly with τ .

Temperature Structure: Assuming LTE gives $S(\tau) = B(\tau) = (\sigma/\pi)T^4$ and using the Milne-Eddington approx above, we get

$T(\tau) \approx \left(\frac{3}{4}\tau\right)$	$+\frac{1}{2}$) ^{1/4} $T_{\rm eff}$
--	---

In the above we get $T_{\rm eff} = T(\tau = 2/3)$ as it should

Limb Darkening: Using the Eddington-Barbier surface relation $I(0,\mu) = S(\tau = \mu)$ gives $I(0,\mu) = 3/4F(\mu + 2/3)$, so the centre-to-limb variation for a gray star is:

$$\frac{I(0,\mu)}{I(0,1)} = \frac{3}{5}(\mu + 2/3)$$

This gives I(0,0) / I(0,1) = 0.4, which is in excellent agreement with Solar observed limb darkening

Theoretical Spectrum Calculate wavelength dependent opacity: hydrogen bound-free opacity Temperature structure: Gray atmosphere: T⁴ = T⁴_{eff}(3τ/4+1/2) Emergent flux: LTE + Eddington-Barbier: F = S(τ = 2/3) = B(T[τ = 2/3])

Temperature Structure

Assume gray temperature structure:Opacity isn't really gray, so let's pick 5000A as a representative wavelength: $\tau_{5000} = \tau(\lambda = 5000 \text{ A})$, and assume temperature structure is

$$T^{4}(\tau) = T_{\rm eff}^{4} \left(\frac{3}{4}\tau_{5000} + \frac{1}{2}\right)$$

Eddington-Barbier gives $F(\lambda) = S(\tau_{\lambda} = 2/3) = B(T[\tau_{\lambda} = 2/3])$ Radiation comes from $\tau_{\lambda} = 2/3$, so want temperature at this depth If $\tau_{\lambda} = 2/3$ then $\tau_{5000} = \tau_{\lambda} / (\kappa_{\lambda} / \kappa_{5000})$ So temperature at $\tau_{\lambda} = 2/3$ is

$$T^{4}(\tau_{\lambda}) = T_{\text{eff}}^{4} \left(\frac{3}{4} \times \frac{2}{3} [\kappa_{\lambda} / \kappa_{5000}] + \frac{1}{2}\right)$$

Emergent Flux

From Eddington-Barbier surface relation:

$$F_{\lambda}(0) = \pi B_{\lambda}(T[\tau_{\lambda} = 2/3])$$

Remember $vB_v = \lambda B_\lambda$ so

$$F_{\lambda}(0) = \frac{2\pi h c^2}{\lambda^5} \frac{1}{\exp(h c / \lambda k T[\tau_{\lambda}]) - 1}$$

Where we use the $T(\tau_{\lambda})$ relation derived above to finally give the emergent flux spectrum...

