2.4 Energy conservation Il:
Transport.

« The Sun’s interior is hotter than its surface.

» Existence of a temperature gradient implies an
outward flux of energy.

» Energy flux is determined by conservation of
energy as just shown.

» Temperature gradient depends on method of
energy transport:
— Radiative diffusion
— Convective motions
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Flux and radiation pressure

* From AS 3002, flux through surface element dA
in frequency interval fromvtov +dvis:

F = 55 |,cos8.dQ = 2ﬂj |, pdu
am -1

where we have substituted f = cosé.

; Pv

v
« Each photon carries momentum p, = E/c = hv/c
* Bounces off dA at angle of incidence cos 0.
* Momentum transferred per photon=2 p,cos 6.
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Pressure = momentum flux

* Pressure = outward (photons/sec/unit area)
X (2 p,cos 0)
= (in+out)(photons/sec/unit area)
X (p,cos0)

1 27 ¢
P., == Sﬂlvcosze.dQ:—jlwuzd,u
R (o
n 1
» The factor cos? 0 allows for both foreshortening

of the surface element’s cross-section and
transfer of normal component of momentum.
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Radiative energy transport

» Specific intensity of beam travelling at angle 6 to
radial direction in medium of density p, opacity K,
and source function S;

—,0/( (S, —1,). Multiply both sides by

U= cosé? and integrate:

j/.l V d,U PK, I,Ud,U(S -1 ) S, is isotropic

0
d ) ‘
:_Ilv:u d/'I:pKVSV‘[ dﬂ_pvalvﬂdﬂ
dr -1 - -1
cf.Radiation pressure cf. Flux
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Radiative-equilibrium
temperature gradient

* We find that the opacity determines the
temperature gradient:

dPad dPad Kp
C— = =K, 0F, >—2 =-—"F
dr. vﬂ:v dl’ C
where we define a flux - weighted mean opacity,
o] 0 1
KEIKVFVdI/ IFVdV.But P =l—J=—aT4,
0 0 3 3
sodp—“’*‘:f'aﬁg. Also F = Lz,
d 3 dr 4rrr
= dT(r) = - 3Kp L(r) Another equation
dr 4acT® 4nr? and a new variable, T(r).
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Convective equilibrium

Suppose temperature gradient is radiative.
Is it stable to small local perturbations?

Suppose a blob of mass dm at radius r has its
temperature perturbed by a small amount:

AT(r) =Ty, (r) = T(r).
Pressure will change by
AP(r) = Py, (r) = P(r).
but pressure balance is quickly restored by a

change in volume, to give density difference from
surroundings:

20(r) = pan(r) = (7).
Temperature excess with pressure equilibrium in
ideal gas - density deficiency - buoyancy.
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Buoyant stability

* If AT >0, buoyant force > gravity,

so blob rises to new position at > +dT, P+dP, prdp
r+Ar.
e Surroundings at new position
have density dp 5m
or)+— 4 r T(r), P(), p(r)
r
» while blob changes density to
match local pressure:
d
on)+( L) &
ar’ an d d
* Element is stable if it becomes ‘(_,0) > ‘(—’0) ‘
denser than surroundings, i.e. if: dr dr/ s
+ Ideal gas: daT dT -
985 p por = ‘(—) < (—) for stability.
dr dar’/ s
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Adiabatic changes

* Rising blob is hotter than its surroundings as it
rises so can only lose heat (& vice versa for
falling blob).

* Hence change in temperature with r must be
less than adiabatic (no heat loss) value :

()<,

» Adiabatic gradient is given by: ,
PV =const = P 0o D(?) : wherey:%

= P"'TY = const
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Logarithmic T-P gradients

e For an adiabatic blob, we thus get:
l(d_T) _V_—ll(d_P)
T\dr’ 4 y P\dr

(dlogT) _y-1
dlogP/, vy

* Use hydrostatic equilibrium to get a similar T-P
relation for the radiative gradient:

(dlogT) __ 3P
dlogP/ , 167acT'GM’
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Convective stability criterion

« Remembering that pressure is the same inside and
outside blob at all times, we can write the stability

criterion as:
(dlogT) § (dlogT)
dlogP/ dlogP/
3kL(r)P < y-1
1677acT*GM ~ y
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Convectively unstable regions

* (1) Cores of massive stars:

Radiation flux L(r)/47r?* can become very
large while opacity o remains small in the
centres of main massive main - sequence stars.

* (2) Outer envelopes of cool stars:

AS 4013

Adiabatic exponent ycan approach unity in
sub - surface ionization zones in cool stars.
Hence (y —1)/ ycan become small, and
convection will set in at quite low values

of |(dT/dr), .
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Energy transport

* In formulating stellar structure problem, use a

AS 4013

single expression for the temperature gradient:

dlogT :(1_5)(dlogTj +Z(dlogT) |
dlogP dlogP/, dlogP/

where £ characterizes the convective efficiency :
¢ = 0= radiative equilibrium
¢ =1= adiabatic convection

0 < é<1= non - adiabatic convection: & must
be determined from convection theory.
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2.5.1 Constitutive relations

Still need additional equations to describe
p, € K, & and (dlogT/dlogP) in terms of:

— the state variables T and P, and

— the composition of the stellar material (X,Y,Z or X;)

The following constitutive relations close the
system of ODEs:

p=p(P,T,X) (equation of state)
E=&p,T,X) (nuclear energy generation rate)
K=k(pT,X) (opacity)

E=&(p, T, X) (convective efficiency)

dlogT
dlogP

(0, T,&k,X)  (energy transport)
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2.5.2 Equations of stellar structure

We have now determined the four basic (time-
independent) equations of stellar structure.

Use mass continuity to transform them to have
enclosed mass as the independent variable.

Mass continuity: da 1
dm 4m?p
Conservation of energy: (L
—=¢
dm
Hydrostatic equilibrium:  4p Gm
dm  4nrt
Energy transport: dT _ Gm TdlogT

dm 47r* PdlogP
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2.5.3 Boundary conditions

e To solve a system of n ODEs, we need to specify n
boundary conditions.

* In Lagrangian frame, boundaries are at the centre
(m=0) and the surface (m=M).

At the centre:
r(m=0)=0
L(m=0)=0
At the surface:
L 1/ 4
T(m = M) = Teff(z m)
Ps(m=M)=0
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2.5.4 Solution

» Solution of equations of stellar structure gives the
run of P, T, m and L as functions of r throughout
the domain 0<r <R,

» Solutions are characterized uniquely by
— Total mass of star M = m(R)
— Run of chemical composition through star.
— Gravitational binding energy.

» Gives quantitative description of stellar interior.
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