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2.4 Energy conservation II:
Transport.

• The Sun’s interior is hotter than its surface.
• Existence of a temperature gradient implies an 

outward flux of energy.
• Energy flux is determined by conservation of 

energy as just shown.
• Temperature gradient depends on method of 

energy transport:
– Radiative diffusion
– Convective motions
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• From AS 3002, flux through surface element dA
in frequency interval from νννν to νννν + dνννν is:

• Each photon carries momentum pν ν ν ν = E/c = hνννν/c
• Bounces off dA at angle of incidence cos θθθθ .
• Momentum transferred per photon= 2 pννννcos θθθθ .

Flux and radiation pressure

Fν =  Iν
4π

cosθ.dΩ = 2π Iν µdµ
−1

1

where we have substituted µ = cosθ.

θθθθ θθθθ

pνννν



Page 2

AS 4013 Stellar Physics

Pressure = momentum flux

• Pressure = outward (photons/sec/unit area)                      
x (2 pννννcos θθθθ )

= (in+out)(photons/sec/unit area)           
x ( pννννcos θθθθ )

• The factor cos2 θθθθ allows for both foreshortening 
of the surface element’s cross-section and 
transfer of normal component of momentum.

Prad,ν = 1
c

 Iν
4π

cos2θ.dΩ = 2π
c

Iν µ2dµ
−1

1
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Radiative energy transport

• Specific intensity of beam travelling at angle θθθθ to 
radial direction in medium of density ρρρρ, opacity κκκκνννν
and source function Sνννν:

cosθ
dIν

dr
= ρκ ν (Sν − Iν ). Multiply both sides by

µ = cosθ,  and integrate:

µ 2 dIν

dr
dµ

−1

1

= ρκ ν µ dµ
−1

1

(Sν − Iν )

� d

dr
Iν µ 2dµ

−1

1

= ρκ ν Sν µ dµ
−1

1

− ρκ ν Iν µ dµ
−1

1

Sνννν is isotropic

0

cf. Fluxcf.Radiation pressure
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• We find that the opacity determines the 
temperature gradient:

c
dPrad,ν

dr
= −κ ν ρFν

� dPrad

dr
= −κρ

c
F    

where we define a flux - weighted mean opacity,

κ ≡ κ ν Fν
0

∞

dν Fν
0

∞

dν . But Prad =
u

3
=

1

3
aT 4,

so 
dPrad

dr
= 4

3
aT 3 dT

dr
.    Also    F = L

4π r2
,

� dT (r)
dr

= − 3κρ
4acT 3

L(r)
4π r 2

Radiative-equilibrium 
temperature gradient

Another equation
and a new variable, T(r).
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Convective equilibrium

• Suppose temperature gradient is radiative.
• Is it stable to small local perturbations?
• Suppose a blob of mass δδδδm at radius r has its 

temperature perturbed by a small amount:

• Pressure will change by

• but pressure balance is quickly restored by a 
change in volume, to give density difference from 
surroundings:

• Temperature excess with pressure equilibrium in 
ideal gas →→→→ density deficiency →→→→ buoyancy.

∆T(r) = Tδm (r) − T(r).

∆P(r) = Pδm (r) − P(r).

∆ρ(r) = ρδm (r) − ρ(r).
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Buoyant stability
• If ∆∆∆∆T > 0, buoyant force > gravity, 

so blob rises to new position at 
r+∆∆∆∆r.

• Surroundings at new position 
have density

• while blob changes density to 
match local pressure:

• Element is stable if it becomes 
denser than surroundings, i.e. if:

• Ideal gas:

r

r+∆∆∆∆r

δδδδm
T(r), P(r), ρρρρ(r)

T+dT, P+dP, ρρρρ+dρρρρ

ρ(r) +
dρ
dr

∆r

ρδm (r) +
dρ
dr

�
 �
 

�
 �
 δm

∆r

dρ
dr

�
 �
 

�
 �
 >

dρ
dr

�
 �
 

�
 �
 δm

P ∝ ρT �
dT
dr

	
 

 

�
 �
 < dT

dr

	
 

 

�
 �
 δm

 for stability.
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Adiabatic changes
• Rising blob is hotter than its surroundings as it 

rises so can only lose heat (& vice versa for 
falling blob).

• Hence change in temperature with r must be 
less than adiabatic (no heat loss) value :

• Adiabatic gradient is given by:

PV γ = const 
 P ∝ ργ ∝ P

T

�
 �
 

�
 �
 
γ

,  where γ =
CP

CV


 P1−γ T γ = const


 (1-γ )
dP
dr

+ γ P
T

dT
dr

= 0.

dT
dr

	
 

 

�
 �
 δm

< dT
dr

	
 

 

�
 �
 
ad

 .



Page 5

AS 4013 Stellar Physics

Logarithmic T-P gradients

• For an adiabatic blob, we thus get:

• or:

• Use hydrostatic equilibrium to get a similar T-P 
relation for the radiative gradient:

d logT

d logP

�
 �
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�
 
ad

= γ − 1
γ

.

1
T

dT

dr

�
 �
 

�
 	
 
ad

= γ −1
γ

1
P

dP

dr

�
 �
 

�
 	
 

d logT

d logP



 �
 

�
 



 �
 

�
 
rad

= 3κL(r)P

16π acT 4GM
.
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Convective stability criterion

• Remembering that pressure is the same inside and 
outside blob at all times, we can write the stability 
criterion as:

d logT
d logP

�
 �
 

�
 

�
 �
 

�
 
rad

< d logT
d log P

�
 �
 

�
 

�
 �
 

�
 
ad

� 3κL(r)P

16π acT 4GM
< γ −1

γ
.



Page 6

AS 4013 Stellar Physics

Convectively unstable regions

• (1) Cores of massive stars:

• (2) Outer envelopes of cool stars:

Radiation flux L(r) / 4π r2 can become very

large while opacity κρ remains small in the 

centres of main massive main - sequence stars.

Adiabatic exponent γ can approach unity in

sub - surface ionization zones in cool stars. 

Hence (γ −1) / γ can become small,  and

convection will set in at quite low values

of (dT/dr)rad .
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Energy transport

• In formulating stellar structure problem, use a 
single expression for the temperature gradient:

d logT

d logP
= (1− ξ)

d logT

d logP

�
 �
 

�
 

�
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�
 
rad

+ ξ d logT

d logP

�
 �
 

�
 

�
 �
 

�
 
ad

.

where ξ characterizes the convective efficiency :

ξ = 0 � radiative equilibrium

ξ = 1 � adiabatic convection

0 < ξ < 1 � non − adiabatic convection :  ξ must

be determined from convection theory.
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2.5.1 Constitutive relations

• Still need additional equations to describe 
ρ, ε, κ, ξ ρ, ε, κ, ξ ρ, ε, κ, ξ ρ, ε, κ, ξ and  (dlogT/dlogP) in terms of: 

– the state variables T and P, and
– the composition of the stellar material (X,Y,Z or Xi )

• The following constitutive relations close the 
system of ODEs:

ρ = ρ(P,T, Xi )          (equation of state)

ε = ε(ρ,T,Xi )            (nuclear energy generation rate)

κ = κ (ρ,T, Xi )           (opacity)

ξ = ξ(ρ,T, Xi )           (convective efficiency)

dlogT

dlogP
(ρ,T,ξ,κ , Xi)   (energy transport)
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2.5.2 Equations of stellar structure

• We have now determined the four basic (time-
independent) equations of stellar structure.

• Use mass continuity to transform them to have 
enclosed mass as the independent variable.

• Mass continuity:

• Conservation of energy:

• Hydrostatic equilibrium:

• Energy transport:

dr
dm

= 1
4πr2ρ

dL
dm

= ε

dP
dm

= − Gm
4π r4

dT

dm
= Gm

4π r4

T

P

d logT

d logP
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2.5.3 Boundary conditions

• To solve a system of n ODEs, we need to specify n 
boundary conditions.

• In Lagrangian frame, boundaries are at the centre 
(m=0) and the surface (m=M).

At the centre:  

                         r(m = 0) = 0

L(m = 0) = 0

At the surface:

T (m = M) = Teff = L

4πR2σ

�
 �
 

�
 �
 

1/ 4

Pgas(m = M) = 0
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2.5.4 Solution

• Solution of equations of stellar structure gives the 
run of P, T, m and L as functions of r throughout 
the domain 0 < r < R.

• Solutions are characterized uniquely by
– Total mass of star M = m(R)
– Run of chemical composition through star.
– Gravitational binding energy.

• Gives quantitative description of stellar interior.


