3. Stellar models I

- Numerical solutions:
- Shooting method
- Difference method
- Analytical approximations:
- Homologous models

3.1 Shooting method

- Divide star into two zones, inner and outer.
- Estimate additional boundary conditions
- Inward solution:
- At $m=M$ we have $P_{s}=0, T_{s}=T_{\text {eff }}$
- Estimate R and L
- Integrate inwards to fitting point m_{f}
- Hence obtain $\mathrm{P}_{\mathrm{if}}, \mathrm{T}_{\mathrm{if}}, \mathrm{L}_{\mathrm{if}}, \mathrm{r}_{\mathrm{if}}$
- Outward solution:
- At $m=0$ we have $R_{c}=0, L_{c}=0$
- Estimate P_{c} and T_{c}
- Integrate outwards to fitting point m_{f}
- Hence obtain $P_{o f}, T_{o f}, L_{o f}, r_{\text {of }}$
- Adjust till conditions match at fitting point.

Matching at fitting point

- In general:

$$
\begin{aligned}
& \delta P_{f}=P_{i f}-P_{o f} \neq 0, \delta T_{f}=T_{i f}-T_{o f} \neq 0, \\
& \delta L_{f}=L_{i f}-L_{o f} \neq 0, \delta r_{f}=r_{i f}-r_{o f} \neq 0 .
\end{aligned}
$$

- Repeat inward solution:
- with R $+\delta$ R, L
- with R, L+ $\delta \mathrm{L}$
- Repeat outward solution:
- with $\mathrm{P}_{\mathrm{c}}+\delta \mathrm{P}_{\mathrm{c}}, \mathrm{T}_{\mathrm{c}}$
- with $\mathrm{P}_{\mathrm{c}}, \mathrm{T}_{\mathrm{c}}+\delta \mathrm{T}_{\mathrm{c}}$
- From resulting changes in $\mathbf{r}_{\mathrm{if}}, \mathrm{r}_{\mathrm{of}}$ etc form derivatives:

$$
\frac{\partial \delta r_{f}}{\partial R}, \frac{\partial \delta r_{f}}{\partial L}, \frac{\partial \delta r_{f}}{\partial P_{c}}, \text { etc. }
$$

Differential corrections

- Now correct the original estimates for R, L, P_{c}, T_{c} by solving:

$$
\left\{\left.\begin{array}{llll}
\frac{\partial \delta r_{f}}{\partial R} & \frac{\partial \delta r_{f}}{\partial L} & \frac{\partial \delta r_{f}}{\partial P_{c}} & \frac{\partial \delta r_{f}}{\partial T_{c}} \\
\left\lvert\, \frac{\partial \delta L_{f}}{\partial R}\right. & \frac{\partial \delta L_{f}}{\partial L} & \frac{\partial \delta L_{f}}{\partial P_{c}} & \frac{\partial \delta L_{f}}{\partial T_{c}}|\mid(\delta R) \\
\frac{\partial \delta P_{f}}{\partial R} & \frac{\partial \delta P_{f}}{\partial L} & \frac{\partial \delta P_{f}}{\partial P_{c}} & \frac{\partial \delta P_{f}}{\partial T_{c}}
\end{array} \right\rvert\,\left(\left.\begin{array}{l}
\delta r_{f} \\
\frac{\partial \delta T_{f}}{\partial R}
\end{array} \frac{\frac{\partial \delta T_{f}}{\partial L}}{} \frac{\frac{\partial \delta T_{f}}{\partial P_{c}}}{} \frac{\frac{\partial \delta T_{f}}{\partial T_{c}}}{\delta} \right\rvert\,=\left(\left.\begin{array}{l}
\delta L_{f} \\
\delta P_{f} \\
\delta T_{c}
\end{array} \right\rvert\,\right.\right.\right.
$$

- for $\delta R, \delta L, \delta P_{c}, \delta T_{c}$. Repeat until $\delta P_{f}<\varepsilon$, etc where ε is some suitably small number.

3.2 Difference method

- Alternative numerical approach:
- Write ODEs for stellar structure as difference equations:

$$
\frac{r_{j+1}-r_{j}}{m_{j+1}-m_{j}}=\left(\frac{1}{4 \pi r^{4} \rho}\right)_{j+1 / 2} .
$$

- Subscript j refers to variable values at position j inside star.
- Divide star into $\mathrm{J}+1$ shells from $\mathrm{m}_{0}=0$ to $\mathrm{m}_{\mathrm{J}}=\mathbf{M}$:
- 4 nonlinear equations for J shells
- 4 boundary equations
- 4J unknowns
- Linearize resulting 4J nonlinear simultaneous eqs in 4J unknowns and solve (using, e.g. NewtonRaphson).

3.3 Homologous stars

- How do properties of stars vary with mass?
- Use simplifying assumptions to avoid detailed numerical treatment of full problem.
- Look at family of models:
- in complete equilibrium
- each related to others by a change of scale
- Define a family of homologous models, i.e. having same radius, mass distributions relative to reference model denoted by subscript 0 :

$$
\begin{aligned}
& r=\frac{R}{R_{0}} r_{0} \quad \Rightarrow \frac{d r}{d r_{0}}=\frac{R}{R_{0}} \quad \text { and } \\
& m=\frac{M}{M_{0}} m_{0} \Rightarrow \frac{d m}{d m_{0}}=\frac{M}{M_{0}}
\end{aligned}
$$

3.3.1 Mass continuity

$$
\begin{aligned}
\frac{d r}{d m} & =\frac{1}{4 \pi r^{2} \rho} \Rightarrow \rho \propto \frac{1}{r^{2}(d r / d m)} \\
\frac{\rho}{\rho_{0}} & \propto \frac{\left(d r_{0} / d m_{0}\right)}{(d r / d m)}\left(\frac{r}{r_{0}}\right)^{-2} \\
& \propto \frac{\left(d m / d m_{0}\right)}{\left(d r / d r_{0}\right)}\left(\frac{r}{r_{0}}\right)^{-2} \\
& \propto \frac{\left(M / M_{0}\right)}{\left(R / R_{0}\right)^{3}} \Rightarrow \rho \propto \frac{M}{R^{3}}
\end{aligned}
$$

3.3.2 Hydrostatic equilibrium

- Can use H.E. similarly to show that:

$$
P \propto \frac{M^{2}}{R^{4}}
$$

- Write equation of state as a power law:
$P=P_{0} \rho^{\chi_{\rho}} T^{\chi_{T}}$ where the constants $P_{0}, \chi_{\rho}, \chi_{T}$ are assumed to be the same for all stars in the homologous family.
- Equate the two expressions for \mathbf{P} above and differentiate:

$$
4 d \ln R+\chi_{\rho} d \ln \rho+\chi_{T} d \ln T=2 d \ln M
$$

3.3.3 Energy and transport equations

- Treat in same way as mass continuity and hydrostatic equilibrium equations
- Adopt power laws for dependence of energy generation and opacity on local density and temperature:

$$
\begin{aligned}
& \mathcal{E}=\varepsilon_{0} \rho^{\lambda} T^{\nu} \\
& \kappa=\kappa_{0} \rho^{n} T^{-s}
\end{aligned}
$$

3.3.4 Power-law relations

- Can we predict how stellar properties vary with mass using an analytic treatment?
- i.e. we want to construct relations of the form:

$$
\begin{aligned}
R \propto M^{\alpha_{R}} & \Rightarrow d \ln R=\alpha_{R} d \ln M \\
\rho \propto M^{\alpha_{\rho}} & \Rightarrow d \ln \rho=\alpha_{\rho} d \ln M \\
T \propto M^{\alpha_{T}} & \Rightarrow d \ln T=\alpha_{T} d \ln M \\
L \propto M^{\alpha_{L}} & \Rightarrow d \ln L=\alpha_{L} d \ln M
\end{aligned}
$$

- Substitute these into expression found in Section 3.3.2 for hydrostatic equilibrium:
$4 d \ln R+\chi_{\rho} d \ln \rho+\chi_{T} d \ln T=2 d \ln M$
$\Rightarrow 4 \alpha_{R}+\chi_{\rho} \alpha_{\rho}+\chi_{T} \alpha_{T}=2$

