4. Star formation

- Galactic ISM: roughly uniform gas n ~ 5x10⁶ m⁻³.
- Stars form in molecular clouds.
- Dimensions ~ 10pc, density ~ 5x10⁹ m⁻³, temperature ~ 10 K.
- Galactic magnetic field strongly tied to ionized plasma in ISM.
- Field lines run parallel to galactic plane.
- Local perturbationspotential wells
 - -> condensations.

Gaseous Pillars • M16
PRC95-44a · ST Scl OPO · November 2, 1995
J. Hester and P. Scowen (AZ State Univ.), NASA

HST · WFPC2

AS 3003

4.1 Jeans' criterion

- Contracting cloud must be compact enough to ensure that dispersive effects of internal pressure don't overwhelm gravity.
- Energetically, cloud becomes bound if:

$$E_{\text{grav}} + E_{\text{kin}} < 0.$$

• Spherical cloud, mass M, radius R has gravitational binding energy:

$$E_{\text{grav}} = \int_{0}^{M} \frac{Gm}{r} dm = -A \frac{GM^{2}}{R}$$

- where A depends on (and increases with) degree of central condensation of internal density distribution.
- A=3/5 for uniform density; we'll use A=1.

AS 3003 Stellar Physics

Conditions for collapse

· Total thermal (kinetic) energy of cloud is:

$$E_{\rm kin} = \frac{3}{2} \frac{M}{\mu m_{\rm H}} kT$$
 Average mass of cloud particle

 Critical condition: for collapse of a cloud with radius R to occur, need either:

$$M_{\rm cloud} > M_{\rm J} = \frac{3kT}{2G\mu m_{\rm H}}R$$
 Jeans mass

• or

$$\rho_{\rm cloud} > \rho_{\rm J} = \frac{3}{4\pi M^2} \left[\frac{3kT}{2G\mu m_{\rm H}} \right]^3$$
 Jeans density

AS 3003 Stellar Physics

4.2 Onset of contraction

- Contraction of a massive gas-dust cloud will proceed if not opposed by increasing internal pressure.
- Release of E_{grav} tends to increase internal temperature but also excites H₂ and other molecules into excited rotational levels.
- De-excitation emits photons mainly at IR and mmwave frequencies where cloud is transparent.
- Hence photons escape, cooling the cloud and allowing contraction to proceed.

AS 3003 Stellar Physics

4.3 Fragmentation and formation of protostars

- As main cloud contracts, smaller subregions will also reach the Jeans density
- Fragments will contract independently provided gravitational PE is not converted to internal KE.
- Energy released can be absorbed by:
 - Dissociation of H_2 ($\varepsilon_D = 4.5 \text{ eV}$)
 - ionisation of atomic H (ϵ_{l} = 13.6 eV)
- Amount of energy absorbed by this process is:

$$\frac{M}{2m_{\rm H}} \varepsilon_{\rm D} + \frac{M}{m_{\rm H}} \varepsilon_{\rm I}.$$

AS 3003

Radius of a protostar

Stellar Physics

 If we know the initial radius of the protostar we can calculate the final radius from:

$$GM\left(\frac{1}{R_2} - \frac{1}{R_1}\right) \approx \frac{1}{m_H} \left(\frac{\varepsilon_D}{2} + \varepsilon_I\right).$$

- Example: Radius of a protostar of 1 solar mass is ~10¹⁵ m with a Jeans density ~10⁻¹⁶ kg m⁻³.
- The dissociation + ionisation energy is 3x10³⁹ J.
- The radius after gravitational contraction is R₂~ 10¹¹ m.
- The timescale for this contraction is $t_{dvn} \sim 20,000 \text{ y}$.

AS 3003 Stellar Physics

4.4 Approach to hydrostatic equilibrium

- After H is all ionised:
 - the internal pressure rises
 - contraction slows down
 - hydrostatic equilibrium is approached.
- Can use the Virial theorem to estimate the average internal temperature at this point.
- Total thermal KE of protons and electrons is:

$$E_{\rm kin} \sim \frac{3kT}{2} \frac{M}{\mu m_{\rm H}} = \frac{3kTM}{m_{\rm H}}.$$

· Gravitational energy at end of collapse is:

$$E_{\text{grav}} \sim -\frac{GM^2}{R_2} \sim -\frac{M}{m_{\text{H}}} \left(\frac{\varepsilon_{\text{D}}}{2} + \varepsilon_{\text{I}}\right).$$

AS 3003

Stellar Physics

4.5 Thermal contraction

 Virial theorem: 2E_{kin}+E_{grav}=0, so protostar approaches equilibrium at an average temperature

$$kT \sim \frac{\left(\varepsilon_{\rm D} + 2\varepsilon_{\rm I}\right)}{12} \sim 2.6 \text{ eV},$$

- Corresponds to T~30,000 K.
- Independent of mass of protostar.
- Subsequent contraction governed by opacity, which controls loss of radiation from surface.
- Hence gravitational energy is radiated away on a thermal (Kelvin) timescale, t_K~10⁷ – 10⁸ y.
- Star remains close to hydrostatic equilibrium so we can continue to use Virial theorem.

AS 3003

Stellar Physics

4.6 How far could contraction proceed without nuclear reactions?

 Classical mechanics breaks down when wavefunctions of neighbouring electrons begin to overlap significantly, i.e. at separation

$$r=\lambda_{
m B}=rac{h}{m_{
m e}v}$$
 . de Broglie wavelength

• Since
$$\frac{1}{2}m_{\rm e}v^2 = \frac{3}{2}kT, \quad r = \frac{h}{\left(3m_{\rm e}kT\right)^{1/2}}$$

$$\Rightarrow \rho = \frac{\mu m_{\rm H}}{(4/3)\pi r^3}$$

$$\Rightarrow \rho \approx \mu m_{\rm H} \frac{\left(m_{\rm e}kT\right)^{3/2}}{h^3}.$$

AS 3003 Stellar Physics

Minimum mass of a star

- At this point a further increase in density does not affect the temperature.
- Virial theorem gives average internal temperature:

$$kT \approx \frac{GM \mu m_{\rm H}}{3R} \approx G\mu m_{\rm H} M^{2/3} \rho^{1/3}$$

Substitute to get maximum temperature:

$$kT_{\text{max}} \approx \left[\frac{G^2 \mu m_{\text{H}}^{8/3} m_{\text{e}}}{h^2}\right] M^{4/3} \Rightarrow T_{\text{max}} \approx 10^7 \left(\frac{M}{M_{\text{Sun}}}\right)^{4/3}$$

• For M < 0.08 M_{Sun}, T will not be high enough to trigger nuclear reactions.

AS 3003 **Stellar Physics**