5. Equation of state

- Stellar material is an almost perfect gas.
- Main differences from laboratory gas:
 - Ionized: plasma allows greater compression (10^{-15} m cf. 10^{-10} m).
 - In TE with radiation \Rightarrow intensity follows Planck’s law.
 - Particles may not be classical: quantum mechanical effects.
 - Particles may be relativistic: special relativity.
- A complete description of the macroscopic properties of the gas requires 3 state variables.
- First Law of Thermodynamics:
 \[dE = TdS - PdV + \mu dN \]
 Change in internal energy

Spin and polarization

- Need to allow for intrinsic angular momentum or spin of particles, or for different polarizations of photons:
 \[g(p)dp = g_s \frac{V}{h^3} 4\pi p^2 dp \]
 Partition function

<table>
<thead>
<tr>
<th>Particle type</th>
<th>Spin</th>
<th>g_s</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, n, e</td>
<td>1/2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>1/2</td>
<td>1</td>
<td>Only 1 polarization</td>
</tr>
<tr>
<td>photons</td>
<td>1</td>
<td>2</td>
<td>2 independent polarizations for EM wave.</td>
</tr>
</tbody>
</table>
5.2 Occupation probabilities and Internal energy

- In TE, macroscopic state variables T, P, μ determine equilibrium distribution of particles in quantum states. Different for fermions, bosons.
- Energy of particle, mass m, in quantum state with momentum \mathbf{p}, is:
 \[\varepsilon_p^2 = \mathbf{p}^2 c^2 + m^2 c^4 \]
- Occupation probability $f(\varepsilon_p)$ is the average number of particles in a state with energy ε_p:
 \[\Rightarrow \text{Internal energy } E = \int_0^\infty \varepsilon_p f(\varepsilon_p) g(p) dp. \]
 Total number of particles in gas $N = \int_0^\infty f(\varepsilon_p) g(p) dp$.

5.3 Pressure in an ideal gas – 1

\[P = -\frac{\partial E}{\partial N} \bigg|_{N,S} = -\int_0^\infty \frac{\partial \varepsilon_p}{\partial N} f(\varepsilon_P)g(p) dp. \]

Use \[\frac{\partial \varepsilon_p}{\partial N} = \frac{\partial \varepsilon_p}{\partial p} \frac{\partial p}{\partial N}. \] Since $V = L^3$ and $p \propto L$, get

\[p \propto V^{-1/3} \Rightarrow \frac{dp}{dV} = -\frac{p}{3V}. \]

Also $\varepsilon_p^2 = p^2 c^2 + m^2 c^4$ \[\Rightarrow 2\varepsilon_p \frac{\partial \varepsilon_p}{\partial p} = 2pc^2 \]

\[\Rightarrow \frac{\partial \varepsilon_p}{\partial p} = \frac{pc^2}{\varepsilon_p} \equiv v_p, \text{ so: } \frac{\partial \varepsilon_p}{\partial N} = -\frac{pv_p}{3V}. \]

Speed of particle with momentum p.

Page 2
Pressure in an ideal gas – 2

Hence \(P = \frac{1}{3V} \int_{0}^{\infty} pv_p f(\varepsilon_p) g(p) dp = \frac{N}{3V} \langle pv_p \rangle \). \text{Average over N particles in gas}

Non-relativistic: \(\varepsilon_p = mc^2 + \frac{p^2}{2m} \), and \(v_p = \frac{p}{m} \)

\[\Rightarrow P = \frac{2N}{3V} \left\langle \frac{p^2}{2m} \right\rangle = \frac{2}{3} \text{ of kinetic energy density.} \]

Ultra-relativistic: \(\varepsilon_p = pc \), and \(v_p = c \)

\[\Rightarrow P = \frac{N}{3V} \langle pc \rangle = \frac{1}{3} \text{ of kinetic energy density.} \]

5.4 Equation of state for an ideal classical gas – 1

\[P = \frac{1}{3V} \int_{0}^{\infty} pv_p f(\varepsilon_p) g(p) dp \]

Substitute for density of states:

\[g(p) dp = g_s \frac{V}{h^3} 4\pi p^2 dp \]

Occupation probability in classical limit:

\[f(\varepsilon_p) \approx \frac{1}{\exp[(\varepsilon_p - \mu)/kT]} \ll 1 \]
Equation of state for an ideal classical gas – 2

\[P = \frac{1}{3V} \exp \left(\frac{\mu}{kT} \right) \int_0^\infty p v_p \exp \left(\frac{-\epsilon_p}{kT} \right) g_s \frac{V}{h^3} 4\pi p^2 dp. \]

Now \(d\epsilon_p = v_p dp \), so can rewrite integral:

\[\int_0^\infty p^3 \exp \left(\frac{-\epsilon_p}{kT} \right) v_p dp = -kT \int_0^\infty p^3 \left(\exp \left(\frac{-\epsilon_p}{kT} \right) \right) dp. \]

Or by parts:

\[= 3kT \int_0^\infty \exp \left(\frac{-\epsilon_p}{kT} \right) p^2 dp. \]

Equation of state for an ideal classical gas – 3

• Substitute back to get expression for the pressure in a classical ideal gas:

\[P = \frac{kT}{V} \exp \left(\frac{\mu}{kT} \right) \int_0^\infty \exp \left(\frac{-\epsilon_p}{kT} \right) g_s \frac{V}{h^3} 4\pi p^2 dp. \]

• Comparing this with expression for the total number of particles:

\[N = \exp \left(\frac{\mu}{kT} \right) \int_0^\infty \exp \left(\frac{-\epsilon_p}{kT} \right) g_s \frac{V}{h^3} 4\pi p^2 dp \]

• leads to the equation of state for an ideal classical gas:

\[P = \frac{N}{V} kT = nkT. \]
Condition for ideal classical gas

- In classical limit:
 \[\exp[(mc^2 - \mu)/kT] >> 1. \]
- Use this to derive an explicit expression for the chemical potential of a classical gas. In equation for total no. of particles substitute:
 \[\varepsilon_p = mc^2 + \frac{p^2}{m} \]
 and integrate to get:
 \[N = \exp\left(\frac{\mu - mc^2}{kT}\right) g_s \frac{V}{h^3} (2\pi mkT)^{3/2}. \]
- Rearrange:
 \[\mu - mc^2 = -kT \ln\left(\frac{g_s n_Q}{n}\right) \]
 \[n_Q = \left[\frac{2\pi mkT}{\hbar^2}\right]^{3/2} \]
 Quantum concentration
 \[n = \frac{N}{V} \]

Ultra-relativistic classical gas

- For UR particles neglect rest energy \(mc^2 \):
 Substitute \(\varepsilon_p = pc \) into expression for \(N \) to get:
 \[\mu = -kT \ln\left(\frac{g_s n_Q}{n}\right) \text{ where } n_Q = 8\pi \left[\frac{kT}{\hbar c}\right]^3. \]
- Hence condition for classical gas
 \[\exp[(mc^2 - \mu)/kT] >> 1 \]
 is satisfied if \(n << n_Q \).
Fermi-Dirac distribution

- Total number of particles:
 \[N = \int g_s \frac{V}{\hbar^3} 4\pi p^2 dp = \frac{8\pi V}{3\hbar^3} p_F^3 \] where \(g_s = 2 \).

- Rearrange to get Fermi momentum:
 \[p_F = \hbar \left[\frac{3n}{8\pi} \right]^{1/3} \] where \(n = \frac{N}{V} \) as usual.

- To get equation of state evaluate internal energy.
 Non-relativistic case: \(p_F << mc \) implies \(n << (mc/\hbar)^3 \) (\(= (1/\lambda_\nu)^3 \)). Subst into expression for \(E \) to get:
 \[E = \int_0^{p_F} \epsilon_p g_s \frac{V}{\hbar^3} 4\pi p^2 dp = N \left[mc^2 + \frac{3p_F^2}{10m} \right]. \]

Equation of state

- NR degenerate electron gas: neglect \(mc^2 \) and recall that \(P = (2/3)E \):
 \[P = K_{NR} n^{5/3}, \text{ where } K_{NR} = \frac{h^3}{5m} \left[\frac{3}{8\pi} \right]^{2/3} \]

- UR degenerate electron gas:
 \[P = K_{UR} n^{4/3}, \text{ where } K_{UR} = \frac{hc}{4} \left[\frac{3}{8\pi} \right]^{1/3}. \]

- Note that in both cases, pressure depends only on density, not on temperature.
5.6 Photon gas

- Thermal radiation may be described as gas of zero-mass bosons with zero chemical potential.
- Photon number density:
 \[n = b T^3 \]
 where \(b = 2.404 \times 8\pi (k / hc)^3 = 2.03 \times 10^7 \text{ K}^{-3} \text{ m}^{-3} \).
- Internal energy density:
 \[U = a T^4 \]
 where \(a = 2.404 \times 8\pi^5 k^4 / 15 (hc)^3 = 7.565 \times 10^{-16} \text{ J K}^{-4} \text{ m}^{-3} \).
- Radiation pressure:
 \[P_{\text{rad}} = U / 3 = a T^4 / 3. \]

Combining pressures

- Total pressure from all components of a plasma consisting of a gas+radiation mix:
 \[P_t = P_{\text{gas}} + P_{\text{rad}} = P_{\text{ion}} + P_{\text{e}} + P_{\text{rad}} \]
- Recall that internal temp of star \(T_1 \sim M/R \) and particle density \(n \sim M/R^3 \).
- Pressure ratio (classical gas/radiation):
 \[\frac{P_{\text{rad}}}{P_{\text{gas}}} = \frac{a T_1^4 / 3}{n_e k T_1 + n_i k T_1} \propto \frac{M^4 / R^4}{M^2 / R^4} \propto M^2. \]
- Hence radiation pressure becomes increasingly important for increasing stellar mass, leading ultimately to instability at \(M \sim 50 \text{ M}_\odot \).
5.7 Density-temperature diagram

Classical, UR
\[P = nkT \]

Classical, NR
\[P = n k T \]

Degenerate, NR

\[P = K_{NR} n^{5/3} \]

Degenerate, UR

\[P = K_{UR} n^{4/3} \]

Core of supernova progenitor

Sun

White dwarf

Normal metal

Electron concentration \(n \) (m\(^{-3}\))

Temperature \(T \) (K)

Core of supernova progenitor

Sun

White dwarf

Normal metal

Electron concentration \(n \) (m\(^{-3}\))

Temperature \(T \) (K)