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5. Equation of state

• Stellar material is an almost perfect gas.
• Main differences from laboratory gas:

– Ionized: plasma allows greater compression (10–15 m cf. 10–10 m).
– In TE with radiation =>intensity follows Planck’s law.
– Particles may not be classical: quantum mechanical effects.
– Particles may be relativistic: special  relativity.

• A complete description of the macroscopic 
properties of the gas requires 3 state variables.

• First Law of Thermodynamics:

Change in 
internal
energy

Temperature

Pressure

Chemical potential
(describes effect of
a change in number
density, e.g. ionization:
H1 + e– –> H0 + γ )γ )γ )γ )

dE = TdS − PdV + µdN
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Spin and polarization

• Need to allow for intrinsic angular momentum or 
spin of particles, or for different polarizations of 
photons:

Partition function

Particle type Spin gs Comment

p, n, e 1/2 2

νννν 1/2 1 Only 1 polarization

photons 1 2 2 independent polarizations

for EM wave.

g( p)dp = gs

V

h3 4π p2dp
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5.2 Occupation probabilities and 
Internal energy

• In TE, macroscopic state variables T, P, µµµµ
determine equilibrium distribution of particles in 
quantum states. Different for fermions, bosons.

• Energy of particle, mass m, in quantum state with 
momentum p, is:

• Occupation probability f(εεεεp) is the average number 
of particles in a state with energy εεεεp :

ε p
2 = p2c2 + m 2c 4

� Internal energy     E = ε p 
0

∞

� f (ε p ) g( p)dp.

Total number of particles in gas N =  
0

∞

� f (ε p ) g( p)dp.
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5.3 Pressure in an ideal gas – 1

Speed of particle
with momentum p

P = −∂E
∂V N ,S

= −
∂ε p

∂V
0

∞

� f (ε p )g( p)dp.

Use 
∂ε p

∂V
=

∂ε p

∂p

∂p

∂V
.   Since V = L3 and p ∝ L,  get

p ∝ V −1/ 3 �
dp

dV
= − p

3V
.

Also ε p
2 = p2c2 + m2c4 � 2ε p

∂ε p

∂p
= 2pc2

�
∂ε p

∂p
= pc2

ε p

≡ vp , so :  
∂ε p

∂V
= −

pvp

3V
.
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Pressure in an ideal gas – 2

Hence  P = 1

3V
pvp

0

∞

� f (ε p )g( p)dp = N

3V
pvp .

Non - relativistic :  ε p = mc2 + p2

2m
,  and vp = p

m

� P =
2N

3V

p2

2m
=  2/3 of kinetic energy density.

Ultra- relativistic :  ε p = pc,  and vp = c

� P = N

3V
pc =  1/3 of kinetic energy density.

Average over N
particles in gas
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5.4 Equation of state for an          
ideal classical gas – 1

P = 1
3V

pvp

0

∞

� f (ε p )g( p)dp

g( p)dp = gs

V
h3 4π p2dp

f (ε p ) ≈ 1
exp[(ε p − µ ) / kT ]

<< 1

Substitute for 
density of states:

Occupation probability
in classical limit:
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Equation of state for an               
ideal classical gas – 2

P = 1
3V

exp
µ
kT
�  
�  

�  
�  pvp

0

∞

� exp
−ε p

kT
�  
�  

�  
�  gs

V

h3 4π p2dp.

Now dε p = vpdp,  so can rewrite integral :

p3

0

∞

� exp
−ε p

kT
�  
�  

�  
�  
vpdp = −kT p3

0

∞

� d exp(−ε p / kT)( )

Or by parts:            = 3kT exp(−ε p / kT)p2

0

∞

� dp.
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Equation of state for an               
ideal classical gas – 3

• Substitute back to get expression for the pressure 
in a classical ideal gas:

• Comparing this with expression for the total 
number of particles:

• leads to the equation of state for an ideal classical 
gas:

P =
kT

V
exp

µ
kT
�  
�  

�  
�  exp

−ε p

kT
�  
�  

�  
�  

0

∞

� gs

V

h3 4π p2dp.

N = exp
µ

kT
�  
�  

�  
�  exp

−ε p

kT
�  
�  

�  
�  

0

∞

� gs

V

h3 4π p2dp

P =
N

V
kT = nkT .
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Condition for ideal classical gas

• In classical limit:

• Use this to derive an explicit expression for the 
chemical potential of a classical gas. In equation 
for total no. of particles substitute:

• Rearrange:
Quantum 
concentration

exp[(mc2 − µ) / kT ] >> 1.

ε p = mc 2 + p2

m
 and integrate to get :

N = exp
µ - mc 2

kT

�  
�  
�  

�  
�  
�  gs

V

h3 2πmkT( )3/ 2.

 nQ = 2πmkT

h2

	  

  �  

�  

  �  

3 / 2

µ - mc2 = -kT ln
gsnQ

n

�  
�  �  

�  
�  �  

 n = N

V
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Ultra-relativistic classical gas

• For UR particles neglect rest energy mc2:

• Hence condition for classical gas

is satisfied if n << nQ.

Substitute ε p = pc into expression for N to get :

µ = −kT ln
gsnQ

n

	  

  �  

�  

  �  
 where nQ = 8π kT

hc

	  

  �  

�  

  �  

3

.

exp (mc2 − µ) / kT[ ]>> 1
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Fermi-Dirac distribution

• Total number of particles:

• Rearrange to get Fermi momentum:

• To get equation of state evaluate internal energy. 
Non-relativistic case: pF << mc implies  n << 
(mc/h)3 (  = (1/λλλλc) 3 ). Subst into expression for E 
to get:

N = gs
0

pF

�
V

h3 4πp2dp = 8πV

3h3 pF
3  where gs = 2.

pF = h
3n

8π
	  

  �  

�  

  �  

1/ 3

 where n =
N

V
 as usual.

E = ε p gs
0

pF

�
V

h3 4πp2dp = N mc 2 + 3pF
2

10m

	  

  �  

�  

  �  
.
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Equation of state

• NR degenerate electron gas: neglect mc2 and recall 
that P = (2/3)E:

• UR degenerate electron gas: 

• Note that in both cases, pressure depends only on 
density, not on temperature.

P = KNRn5 / 3,   where KNR =
h3

5m

3

8π
	  

  �  

�  

  �  

2 / 3

P = KURn4 /3,   where KUR =
hc

4
3

8π
	  

  �  

�  

  �  

1/ 3

.
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5.6 Photon gas

• Thermal radiation may be described as gas of 
zero-mass bosons with zero chemical potential.

• Photon number density:

• Internal energy density:

• Radiation pressure:

n = bT3 

where b = 2.404 8π(k / hc)3 = 2.03×107K -3 m-3.

U = aT 4 

where a = 2.404 8π 5k 4 /15(hc)3 = 7.565 × 10−16 J K -4 m-3.

Prad = U / 3 = aT 4 / 3.

AS 3003 Stellar Physics

Combining pressures

• Total pressure from all components of a plasma 
consisting of a gas+radiation mix:

• Recall that internal temp of star TI ~ M/R and 
particle density n ~ M/R3.

• Pressure ratio (classical gas/radiation):

• Hence radiation pressure becomes increasingly 
important for increasing stellar mass, leading 
ultimately to instability at M ~ 50 MSun.

Pt = Pgas + Prad = Pi + Pe + Prad

ions electrons

Prad

Pgas

= aTI
4 / 3

nekTI + nikTI

∝ M 4 / R4

M 2 / R4 ∝ M 2.
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5.7 Density-temperature diagram
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