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6. Stellar Opacity

• Opacity κκκκ appears in energy transport equation.
• Represents ability of stellar material to absorb 

radiation, or 1/(heat conductivity).
• Need to consider all microscopic processes that 

can absorb photons at each frequency νννν:
– Bound-bound (bb) absorption
– Bound-free (bf) absorption
– Free-free (ff) absorption
– Electron scattering (es)

• Need to combine them all into a single 
macroscopic quantity.

• Also need to consider thermal (electron) 
conduction (degenerate white dwarf material).
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6.1 Opacity and mean free path

• Efficiency of conductive processes depends on 
– density of carriers
– energy per carrier
– mean free path of carriers.

• For photons of energy E=hνννν, mean free path:

l = 1

κ ν ρ
 where κ ν = κ ν ,bb +κ ν ,bf +κ ν ,ff +κ ν ,es

bound-bound  bound-free  free-free  electron scattering
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6.2 Opacity in stellar interiors
• Opacity depends on:

– Level populations of different ion species (bb,bf)
– Ionization balance (bf,ff)
– Electron density ne (bf,ff,es)

• LTE is a good approximation inside stars.
• Level populations of individual species depend 

on T (Boltzmann) and on degree of ionization.
• Degree of ionization depends on ne and T 

(Saha).
• Electron density ne depends on ρρρρ , T and local 

composition Xi. If fully ionized:

• So ultimately κκκκνννν= κ= κ= κ= κνννν(ρρρρ,T,Xi).
• Need to define appropriate mean κκκκ over all νννν.

ne ∝ ρ(2X + Y ) = ρ(1+ X) since X + Y ≈ 1.
H contributes
twice as many 
e– per unit mass
as He.
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6.3 Frequency-averaged opacity

• How do we weight κκκκνννν when averaging over νννν?
• Earlier we defined the flux mean  opacity:

• Snag: have to solve the monochromatic equation 
of radiative transfer throughout the star to 
determine Fνννν.

• We want a purely local approximation!
• Fortunately, in TE:

• Hence
−κ ν ρ

c
Fν =  

dPrad,ν

dr
= 4π

3c

dBν (T)
dT

dT

dr
.

Prad,ν = 4π
3c

Bν (T ) 

Chain rule!

κ ≡ κ ν Fν
0

∞

dν Fν
0

∞

dν
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Rosseland mean opacity - 1

• Rearrange and integrate:

• Define Rosseland mean opacity  κκκκR:

• Also:
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Rosseland mean opacity - 2

• Rearrange to get radiative transport equation:

• i.e. same as before, but now we can calculate        
κκκκR= κκκκR(ρρρρ,T,Xi) from local conditions alone.

• Modern stellar structure calculations use tables of 
precalculated opacities for different chemical 
mixtures.

• Highly complex! Need to include all species and all 
bb, bf, ff and es processes.

• Opacity Project: data available online.

dT

dr
= − L

4πr2

3κ Rρ
4acT 3  where 

1

κ R

≡ π
acT 3

1

κ ν

dBν (T)

dT0

∞

dν .
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Useful approximate opacities

• Approximations useful in specific ranges of T and 
ρρρρ for constructing simple stellar models:

• Intermediate T: bf and ff processes dominate:

• High T: electron scattering dominates:

κ es = ne

ρ
α es = (1+ X)

2mH

αes ≈ 0.02(1+ X) m2 kg-1.

αes = 8π
3

e2

4πε0mc2
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NB Check your
AS2001 notes!

κ bf = κ bf
0 Z(1+ X)ρT −7/ 2 m2 kg-1,  κ bf

0 ≈ 4 ×1024

κ ff = κ ff
0 (X + Y)(1+ X)ρT −7/ 2 m2  kg-1,  κ ff

0 ≈ 4 × 1021
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6.4 Diffusion approximation

• Gradient in energy density of carriers:

• Heat flux density is then:

• For photons:

• For electrons:

du

dr
= du

dT

dT

dr
= C

dT

dr
. C=Heat capacity

F(r) = −K
dT

dr
,  where K ≈ 1

3
v l C

Thermal 
diffusivity

Mean 
speed

Mean 
free path

ue = 3
2

nekT,    Ce = 3
2

nek,   ve = 3kT

me
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1/ 2

.

ur = aT 4,    Cr = 4aT 3 �   Kr ≈ 4acT 3

3κρ
.



Page 5

AS 3003 Stellar Physics

6.5 Electron conduction

• e– - ion collisions transfer energy more efficiently 
than e– - e– collisions.

• Mean free path for e– to collide with ion is:

• where r is the distance at which potential energy of 
e– - ion pair matches thermal KE:

l = 1
niσ

;  estimate σ = πr2

From diffusion
approximation

Ze2

4πε 0r
≈ kT �  Ke ≈ k

2π
3kT
me
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Total opacity :  1/κ tot = 1/κ rad +1/κ cond ,  

where κ cond = 4acT 3

3Keρ
.
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Electron vs photon conduction

• Use electron scattering cross-section to get a 
lower limit on photon conductivity:

• e.g. hydrogen plasma, solar interior conditions:

l = 1

neαes

;  if we assume that ne ≈ Zni ,

get 
Kr

Ke

≈ Z
3

aT 3

nek

mec
2

kT

�
 

�
 

	
 



 

�
 

�
 
5/ 2

= 3Z
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T = 106 K,  ρ = 1.4 × 103 kg m−3

 kT ≈ 10−3 mec
2,Pr = 3× 1011Pa,Pe = 7 × 1013 Pa

 Kr = 2 ×105 Ke, i.e. photons are more effective.
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Electron conduction in white dwarfs
• Photon mean free path becomes short in dense 

material.
• Electrons form dense degenerate gas with high 

conductivity, cf.metals.
• If Fermi energy εεεεF >> kT:

• Mean free path is also longer: e– only scattered if 
unoccupied state available to be filled.

• High electron conductivity gives nearly uniform 
temperature throughout degenerate interior.

• Surrounded by insulating outer layer of non-
degenerate e– and ions.

ve increases by factor ~  (εF/kT )1/ 2,  

Ce decreases by factor ~  kT/εF .


