SH ASTRONOMY AND ASTROPHYSICS: AS 3003

Stellar Physics 1: Stellar atmospheres

- 1. Compute the ratio of ionized to neutral hydrogen in a container of pure hydrogen gas with temperature $T = 10^4$ K and electron pressure $P_e = 30$ Pa. The ionization potential of neutral hydrogen is 13.6 eV, and the partition functions of neutral and ionized hydrogen have values 2 and 1 respectively.
 - (note: in exam conditions you will not be expected to derive, but may be expected to know, the Saha equation)
- 2. An F star has a temperature of 7000 K. Microturbulence in the atmosphere has RMS velocity $\xi_t = 3 \text{ kms}^{-1}$. Determine the full width at half maximum of an optically thin line of iron with wavelength 400 nm.
- 3. The transfer equation for radiation emerging from a stellar atmosphere at angle θ to the outward normal is,

$$\mu \frac{\mathrm{d}I}{\mathrm{d}\tau} = I - S$$

where $\mu = \cos \theta$.

If the source function in the Solar photosphere has a linear dependence upon the optical depth τ ,

$$S \simeq a_0 + a_1 \tau$$

show that the specific intensity of light emerging from the photosphere has a linear dependence upon $\cos \theta$.

If, more generally,

$$S = \sum_{i=0}^{i=n} a_i \tau^i,$$

then show that,

$$I(\theta) = \sum A_i \cos^i \theta$$

and derive an expression for the A_i . It may be helpful to know that,

$$\int_0^\infty x^i e^{-x} dx = i!.$$

(questions of this general form also occur frequently in exams)

4. Derive the equation of hydrostatic equilibrium in the form used to model a stellar atmosphere.

If κ is directly proportional to the gas pressure P_g , show how P_g and κ would vary with optical depth τ . For a given optical depth show how the gas pressure varies with gravity. If the temperature distribution is,

$$T^4 = \frac{3}{4}T_e^4(\tau + 2/3)$$

then show that the temperature will be constant at small optical depths, but that in deeper layers $T \propto \sqrt{P_g}$.

5. At fixed pressure $P_e = 10$ Pa, calculate the fraction of hydrogen that is H^- as a function of temperature T. Likewise, calculate the fraction of hydrogen in the n = 3 level that contributes to absorption in the visible. Sketch these functions.

If the absorbtion cross-sections for H^- and in the Paschen continuum are similar, estimate the temperature below which H^- is the most important source of continuous absorption.

(relevant ionization and excitation potentials are in the notes)