SH ASTRONOMY AND ASTROPHYSICS: AS 3003

Stellar Physics 2: Stellar interiors

- 1. During the first phases of protostellar collapse, the gravitational energy released is absorbed first by dissociation of H_2 (dissociation energy per molecule $\epsilon_D = 4.5 \text{ eV}$), and then by ionization of atomic H (ionization energy per atom $\epsilon_I = 13.6 \text{ eV}$).
 - (i) State the timescale on which this stage of collapse will occur, and the timescale on which subsequent evolution will then proceed.
 - (ii) Use the Virial theorem to show that the mean kinetic energy of the protons and electrons in the fully-ionized star immediately following the initial collapse is given by,

$$kT = \frac{GMm_H}{6R}.$$

(You may assume the star is composed of pure hydrogen.)

(iii) Show further that, provided that a large decrease in radius has taken place during the collapse, the average internal temperature of the star will be of the order,

$$kT = \frac{\epsilon_D + 2\epsilon_I}{12},$$

once Virial equilibrium is re-established following ionization. Hence evaluate the average internal temperature T in Kelvin and the radius R in metres of a protostar with a mass of $1 M_{\odot}$.

2. Given that the radiative pressure gradient is related to the radiative flux F in a stellar layer of density ρ and opacity κ at radius r by,

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{\kappa\rho}{c}F,$$

show that the temperature gradient in radiative equilibrium is given by,

$$\frac{\mathrm{d}T}{\mathrm{d}r} = -\frac{3\kappa\rho}{4acT^3} \frac{L(r)}{4\pi r^2}.$$

Use the equation of hydrostatic equilibrium to show that the logarithmic temperature and pressure gradients are related by

$$\frac{\mathrm{d} \log T}{\mathrm{d} \log P} = \frac{3\kappa L(r)P}{16\pi acT^4GM}.$$

A thermally isolated blob of material undergoes a small temperature increase relative to its surroundings and begins to rise under the influence of buoyancy. Show that the temperature inside the blob will vary as,

$$(1 - \gamma)\frac{\mathrm{d}P}{\mathrm{d}r} + \gamma \frac{P}{T}\frac{\mathrm{d}T}{\mathrm{d}r} = 0,$$

where γ is the ratio of specific heats. Hence derive a criteria for the layer to be stable against convection.

3. The temperature gradient in a star is given by the usual expression,

$$\frac{\partial T}{\partial r} = -\frac{3\kappa\rho}{4acT^3} \frac{L(r)}{4\pi r^2}.$$

- (i) Transform this equation into Lagrangian form (i.e. with enclosed mass m as the independent variable).
- (ii) An expression for the rate of change of luminosity with mass is,

$$\frac{\partial L}{\partial m} = \epsilon - c_V \frac{\partial T}{\partial t} + \frac{P}{\rho^2} \frac{\partial \rho}{\partial t}.$$

(note: this is more general that the form given in the lectures). Hence, show that the temperature in the star obeys a diffusion equation,

$$\frac{\partial}{\partial m} \left(\sigma^* \frac{\partial T}{\partial m} \right) = c_V \frac{\partial T}{\partial t} - \left[\epsilon + \frac{P}{\rho^2} \frac{\partial \rho}{\partial t} \right],$$

and find an expression for σ^* .

(iii) A diffusion equation of the form,

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial T}{\partial x} \right),$$

has a diffusion time $\tau = X^2/D$, where X is a characteristic scale. Hence, write down an expression for the thermal adjustment time of a star that is out of thermal equilibrium. Note: this is only subtly different from the Kelvin-Helmholtz timescale.

4. Neutron stars are compact enough that the effects of general relativity become important. The pressure and density for a spherically symmetric, non-rotating star, are then given by 3 ordinary differential equations,

$$\frac{\kappa P}{c^2} = e^{-\lambda} \left(\frac{\nu'}{r} + \frac{1}{r^2} \right) - \frac{1}{r^2} \tag{1}$$

$$\frac{\kappa P}{c^2} = \frac{1}{2}e^{-\lambda} \left(\nu'' + \frac{1}{2}\nu'^2 + \frac{\nu' - \lambda'}{r} - \frac{\nu'\lambda'}{2} \right) \tag{2}$$

$$\kappa \rho = e^{-\lambda} \left(\frac{\lambda'}{r} - \frac{1}{r^2} \right) + \frac{1}{r^2}, \tag{3}$$

where ν and λ are functions of r, the primes denote derivatives with respect to r, and $\kappa = 8\pi G/c^2$ (not the opacity!).

(i) Show that the third equation can be written in the form,

$$\kappa m = 4\pi r (1 - e^{-\lambda})$$

where,

$$m = \int_0^r 4\pi r^2 \rho \mathrm{d}r.$$

(ii) By differentiating the first of these equations with respect to r, and then eliminating the functions λ , λ' , ν' and ν'' , derive the relativistic generalization of the hydrostatic equilibrium equation,

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{Gm}{r^2}\rho\left(1 + \frac{P}{\rho c^2}\right)\left(1 + \frac{4\pi r^3 P}{mc^2}\right)\left(1 - \frac{2Gm}{rc^2}\right)^{-1}.$$

This is the Tolman-Oppenheimer-Volkoff equation.

(iii) In the Newtonian limit $c \to \infty$, and we easily recover the usual expression. For weak fields, expand the product of the brackets and retain only terms linear in $1/c^2$. Hence, derive the *post-Newtonian* approximation to the relativistic hydrostatic equilibrium equation.