MCRT: L4
A Monte Carlo Scattering Code

- Plane parallel scattering slab
- Optical depths & physical distances
- Emergent flux & intensity
- Internal intensity moments
Constant density slab, vertical optical depth $\tau_{\text{max}} = n \sigma z_{\text{max}}$

Normalized length units $z = z / z_{\text{max}}$, so $0 < z < 1$

Emit packets
Packets scatters in slab until:
 - absorbed: terminate, start new packet
 - $z < 0$: re-emit packet
 - $z > 1$: escapes, “bin” packet

Loop over packets
Pick optical depths, test for absorption, test if still in slab
\[z = z_{\text{max}} \]

\[\tau_{\text{max}} = n \sigma z_{\text{max}} \]

- Bin this packet in angle
- Packet absorbed
- Start next packet
- Re-start this packet
Emitting Packets: Packets need an initial starting location and direction. Uniform specific intensity from a surface.

Start packet at \((x, y, z) = (0, 0, 0)\)

\[
I_v(\mu) = \frac{dE}{\mu \, dA \, dt \, d\nu \, d\Omega} \Rightarrow \frac{dE}{dA \, dt \, d\nu \, d\Omega} \propto \frac{dN}{d\Omega} \propto \mu I_v(\mu)
\]

Emission direction: sample \(\phi = 2\pi \xi\)

Sample \(\mu\) from \(P(\mu) = \mu \, I(\mu)\) using cumulative distribution.

Normalization: emitting outward from lower boundary, so \(0 < \mu < 1\)

\[
\xi = \frac{\mu}{\int_{0}^{\mu} P(\mu) \, d\mu} = \mu^2 \quad \Rightarrow \quad \mu = \sqrt{\xi}
\]

\[
\begin{align*}
 n_x &= \sin \theta \cos \phi \\
 n_y &= \sin \theta \sin \phi \\
 n_z &= \cos \theta
\end{align*}
\]
Distance Traveled: Random optical depth \(\tau = -\log \xi \), and \(\tau = n \sigma L \), so distance traveled is:

\[
L = \frac{\tau}{\tau_{\text{max}}} z_{\text{max}}
\]

\[
x = x + Ln_x \\
y = y + Ln_y \\
z = z + Ln_z
\]

Scattering: Assume isotropic scattering, so new packet direction is:

\[
\theta = \cos^{-1}(2\xi - 1) \\
\phi = 2\pi \xi
\]

\[
n_x = \sin \theta \cos \phi \\
n_y = \sin \theta \sin \phi \\
n_z = \cos \theta
\]

Absorb or Scatter: Scatter if \(\xi < a \), otherwise packet absorbed, exit “do while in slab” loop and start a new packet
Structure of FORTRAN program:
do i = 1, npackets
 call emit_packet
 do while ((z .ge. 0.) .and. (z .le. 1.)) ! packet is in slab
 L = -log(ran) * zmax / taumax
 z = z + L * nz ! update packet position, x,y,z
 if ((z.lt.0.).or.(z.gt.zmax)) goto 2 ! packet exits
 if (ran .lt. albedo) then
 call scatter
 else
 goto 3 ! terminate packet
 end if
 end do
 if (z .le. 0.) goto 1 ! re-start packet
 bin packet according to direction
 continue ! exit for absorbed packets, start a new packet
end do
Fortran functions and subroutines: Pass variables and a FUNCTION performs maths, algebra, geometry, to return a single result, e.g., random number generators. SUBROUTINES are similar, but can return many different results. The order that variables are passed must be the same in the call statement and the subroutine. In main program have the call statement:

```fortran
    call emit_packet(iseed,x,y,z,nx,ny,nz)
```

```
subroutine emit_packet(iseed,x,y,z,nx,ny,nz)

  implicit none

  integer iseed
  real x,y,z,nx,ny,nz,ran2

  Set packet position and direction using equations

  return

end
```

Binning Packets

Bin escaping packets according to direction of travel in ϕ (azimuth) and θ (polar). Bins of equal ϕ and equal $[\cos(\theta)]$, gives bins of equal solid angle.

Can also have internal spatial bins to sum quantities for computing number of interactions, fluxes, pressures, etc. See lectures on 3D grid codes.

Can also bin in time when doing time-dependent simulations. In general the time for a particle to traverse a distance is simply $t = d / v$, where v is photon or particle speed in the medium.
Error Estimation

Recall expected value (mean), variance, standard deviation:

\[E(x) = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]
\[\text{var}(x) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

Where \(x \) can be number of photons in a bin (spatial or angular); number of scatterings per photon; counters for mean intensity, fluence, number of absorptions, radiation pressure; etc, etc

Compute sum of \(x \) and \(x^2 \) in each bin (angular or spatial) and estimate \(\sigma \) using:

\[\sigma^2 = \text{var}(x) = E(x^2) - [E(x)]^2 \]

Variance of the mean is \(\sigma^2 / n \)
Standard deviation of the estimate of the mean is \(\sigma / n^{1/2} \)
Random walks

Net displacement of a single photon from starting position after N mean free paths between scatterings is:

$$\mathbf{R} = \mathbf{r}_1 + \mathbf{r}_2 + \ldots + \mathbf{r}_N$$

Square and average to get distance $|R|$ travelled:

$$l_*^2 \equiv \langle \mathbf{R}^2 \rangle = \langle \mathbf{r}_1^2 \rangle + \langle \mathbf{r}_2^2 \rangle + \ldots + \langle \mathbf{r}_N^2 \rangle + 2\langle \mathbf{r}_1 \cdot \mathbf{r}_2 \rangle + \ldots$$

The cross terms are all of the form:

$$2\langle \mathbf{r}_1 \cdot \mathbf{r}_2 \rangle = 2\langle |\mathbf{r}_1||\mathbf{r}_2|\cos \delta \rangle$$

where δ is the angle of deflection during the scattering.

For isotropic scattering, $<\cos \delta> = 0$, cross-terms vanish.
Thus, for a random walk we have
\[l_*^2 \equiv \langle R^2 \rangle = \langle r_1^2 \rangle + \langle r_2^2 \rangle + \ldots + \langle r_N^2 \rangle \]
\[\alpha^2 l_*^2 = \tau_{\text{max}}^2 = N \alpha^2 \langle r^2 \rangle = N \langle \tau^2 \rangle \]
\[N = \tau_{\text{max}}^2 / \langle \tau^2 \rangle = \tau_{\text{max}}^2 / 2 \]

Using:
\[\langle \tau^2 \rangle = \int_{0}^{\infty} p(\tau)\tau^2 d\tau = \int_{0}^{\infty} e^{-\tau} \tau^2 d\tau = 2 \]

If the medium is optically thin, then the probability of scattering is \(1 - e^{-\tau}\)

Using \(1 - e^{-\tau} \equiv \tau\) then \(N \approx \tau\), \(\tau \ll 1\)

Therefore \(N \approx \tau + \tau^2 / 2\) will be roughly correct for any optical depth.