MCRT: L5

- MCRT estimators for mean intensity, absorbed radiation, radiation pressure, etc
- Path length sampling: mean intensity, fluence rate, number of absorptions
- Random number generators
Mean Intensity

\[J_\nu = \frac{1}{4\pi} \int I_\nu \, d\Omega = \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi I_\nu \sin \theta \, d\theta \, d\phi \]

Same units as \(I_\nu \): J/m\(^2\)/s/Hz/sr (ergs/cm\(^2\)/s/Hz/sr)

Function of position (and time), but not direction

Determines heating, ionization, level populations, etc
What is \(J \) at \(r \) from a star with uniform specific intensity \(I_* \) across its surface?

\[
I = I_* \quad \text{for} \quad 0 < \theta < \theta_* \quad (\mu_* < \mu < 1); \quad \mu = \cos \theta
\]

\[
I = 0 \quad \text{for} \quad \theta > \theta_* \quad (\mu < \mu_*)
\]

\[
J = \frac{1}{2} \int_{\mu_*}^{1} I \, d\mu = \frac{1}{2} I_* (1 - \mu_*)
\]

\[
J = I_* \left(\frac{1}{2} \left(1 - \sqrt{1 - \frac{R_*^2}{r^2}} \right) \right) = w I_*
\]

\(w = \text{dilution factor} \)

Large \(r \), \(w = R^2/4r^2 \)
Monochromatic Flux

Energy passing through a surface. Units: J/s/m²/Hz

\[dF_\nu = I_\nu \cos \theta \, d\Omega \]

\[
F_\nu = \int I_\nu \cos \theta \, d\Omega = \int_0^{2\pi} \int_0^\pi I_\nu \cos \theta \sin \theta \, d\theta \, d\phi
\]

If \(I_\nu \) is isotropic thermal radiation, get:

\[
F_\nu = \pi I_\nu = \pi B_\nu
\]
Momentum Flux

The momentum of a photon is E/c

Momentum flux p_ν in the direction of $n =$ photon flux times momentum per photon:

$$p_\nu (n) = 1/c \int I_\nu \cos^2 \theta \, d\Omega$$

One factor of $\cos \theta$ comes from foreshortening of dA

Only the normal component of the momentum acts on the surface, hence the second factor of $\cos \theta$

Units: N/m2/Hz
Energy density of radiation

Consider a cylinder along a ray of length \(c \, dt \). Define:

\[u_{\nu}(\Omega) = \text{energy per unit solid angle per unit volume per unit frequency in the cylinder:} \]

\[dE = u_{\nu}(\Omega) \, dV \, d\Omega \, dv = u_{\nu}(\Omega) \, (dA \times c \, dt) \, d\Omega \, dv \]

All this radiation will exit the cylinder through \(dA \) in time \(dt \), so:

\[dE = I_{\nu} \, dA \, d\Omega \, dt \, dv \]

Equating gives:

\[u_{\nu}(\Omega) = I_{\nu} / c \]

Integrating over angles, we obtain the specific energy density, \(u_{\nu} \) (units \(\text{J/m}^3/\text{Hz} \)). This is the energy per unit volume per unit frequency interval,

\[u_{\nu} = \int u_{\nu}(\Omega) \, d\Omega = (1 / c) \int I_{\nu} \, d\Omega = (4\pi / c) \, J_{\nu} \]

The total energy density of radiation requires one more integration over frequencies (this has dimensions of Energy / Volume):

\[u = \int u_{\nu} \, dv = (4 \pi / c) \int J_{\nu} \, dv \]
Moments of the Radiation Field

First three moments of specific intensity are named J (zeroth moment), H (first), and K (second):

\[
J_\nu = \frac{1}{4\pi} \int I_\nu \ d\Omega
\]

\[
H_\nu = \frac{1}{4\pi} \int I_\nu \cos \theta \ d\Omega
\]

\[
K_\nu = \frac{1}{4\pi} \int I_\nu \cos^2 \theta \ d\Omega
\]

Physically: $J = \text{mean intensity;} \ H = F / 4\pi$

K related to momentum flux:

\[
p_\nu = \frac{4\pi}{c} K_\nu
\]
Intensity Moments

The moments of the radiation field are:

\[J_v = \frac{1}{4\pi} \int I_v \, d\Omega \quad H_v = \frac{1}{4\pi} \int I_v \, \mu \, d\Omega \quad K_v = \frac{1}{4\pi} \int I_v \, \mu^2 \, d\Omega \]

\(J \) – mean intensity; \(H \) – flux; \(K \) – momentum flux

Compute these moments throughout the slab. First split the slab into layers, then tally number of packets, weighted by powers of their direction cosines to obtain \(J, H, K \). Contribution to specific intensity from a single packet is:

\[\Delta I_v = \frac{\Delta E}{|\mu|\Delta A \Delta t \Delta v \Delta \Omega} = \frac{F_v}{|\mu|N \Delta \Omega} = \frac{\pi B_v}{|\mu|N \Delta \Omega} \]
Substitute into intensity moment equations and convert the integral to a summation to get:

\[J_\nu = \frac{B_\nu}{4N} \sum \frac{1}{|\mu_i|} \quad H_\nu = \frac{B_\nu}{4N} \sum \frac{\mu_i}{|\mu_i|} \quad K_\nu = \frac{B_\nu}{4N} \sum \frac{\mu_i^2}{|\mu_i|} \]

Note the mean flux, \(H \), is just the net energy passing each level: number of packets traveling up minus number traveling down.

Pathlength formula (Lucy 1999)
Long history of use in neutronics

\[J_i = \frac{L}{4\pi N \Delta V_i} \sum l \]
Some Monte Carlo photon packets may pass through a cell without interacting (scatter or absorbed), but the path length estimator ensures they still contribute to the estimates for mean intensity, absorbed energy, radiation pressure, etc.

\[J_i = \frac{L}{4\pi N \Delta V_i} \sum l \]
Summing path lengths gives better estimates for intensities, absorbed energy, radiation pressure, etc. More packets pass through a cell than interact with a cell.

Mean intensity, J, related to photon energy density, u, via

$$u_{\nu} = 4\pi J_{\nu} / c$$

Packet contributes a fraction $\varepsilon_{\nu} t/\Delta t$ to the energy density of a cell where $t = l/c$ is time the packet spends in a cell, so can form Monte Carlo estimator:

$$u_{\nu} = \frac{1}{c \Delta t \Delta V_i} \sum \varepsilon_{\nu} l$$

Where $\varepsilon_{\nu} = $ MC packet energy $= L \Delta t / N$. Hence, get estimator for J which will be accurate in optically thin regions:

$$J_i = \frac{L}{4\pi N \Delta V_i} \sum l$$
How much energy absorbed in a cell? Could count number of absorption events in each cell, but this is inaccurate for optically thin systems. We know the change in intensity for radiation passing through a medium with absorbing particles is

\[\text{d}I = - I n \sigma_{\text{abs}} \text{d}l = - I \text{d}\tau_{\text{abs}} \]

Hence, a Monte Carlo estimator for absorbed energy:

\[E_{i}^{\text{abs}} = \frac{L}{4\pi N \Delta V_i} \sum n \sigma_{\text{abs}} l \]
Random Number Generators

• Want random numbers in range $0 < \xi < 1$
• Generate sequence of numbers rapidly
• No patterns or correlations
• Pass statistical tests for randomness
• Because using computer algorithms the sequence will be periodic, so period should be as long as possible – pseudo random numbers

Anyone who considers arithmetical methods for producing random digits is, of course, in a state of sin.

John von Neumann
Random Number Generators

- Pseudo random number generators PRNGs
- $\xi = \text{ran}(\text{seed})$, seed usually an integer, updated in each call to ran
- Can easily de-bug Monte Carlo codes: if use same seed for PRNG will get same random sequence
- Use uniformly distributed random numbers from $(0 < \xi < 1)$ to sample from complex functions
- Much research devoted to PRNGs
- Computer modular arithmetic, remainders and bits
Middle Square Method

• Used by von Neumann in 1940s
• Recursive relation: square a n-digit number and take the middle n digits (add zeroes to make a $2n$ digit number if necessary), repeat process

• e.g., $n = 4$: $2568^2 = 06594624$ gives 5946, $\xi = 0.5946$
 $5946^2 = 35354916$ gives 3549, $\xi = 0.3549$
 $3549^2 = 12595401$ gives 5954, $\xi = 0.5954$
 etc, etc

• Problems: short period, can get stuck in very short loops, or crash (e.g., 0000)

• Von Neumann acknowledged problems, but found this fast (1940s), adequate for problems, and crashes were obvious
Linear Congruential Generators

- Based on integer recurrence relation:
 \[y_{i+1} = \text{mod}(a y_i + c, M) \]

- mod(A,B) gives remainder when A divided by B

- Careful choice of \(a, c, M\) gives periods around \(2^{32} (10^9)\)

- Random number in range \((0,1)\) from: \(\xi_i = \frac{y_i}{M}\)

- ran2.f from *Numerical Recipes* is more complex, involving shuffling of sequences. Authors offered prize of $1000 if anyone finds a statistical test that ran2 fails.
Good and Bad Random Number Generators

\[y_{i+1} = \text{mod}(a y_i + c, M) \]
\[\xi_i = \frac{y_i}{M} \]

- \(a = 1366, c = 150889, M = 714025 \)
- \(a = 137, c = 187, M = 256 \)
- “First return maps” – plot successive pairs of \((\xi_i, \xi_{i+1})\)

![Figure 14.4. First return maps for (a) Random Number Generator #1; (b) Random Number Generator #2.](image-url)
Should we worry…?

- Maybe… but if you read you’ll get scared!
- OK for our needs, need better for cryptography
- Mersenne Twister: period $2^{19937}-1 \sim 4.3 \times 10^{601}$