In the first lecture, we introduced the flux F_{ν} , specific intensity I_{ν} , and momentum flux p_{ν} , which are all monochromatic quantities (units include Hz⁻¹)

Can also define their frequency integrated quantities:

 $F = \int F_{v} dv$ $I = \int I_{v} dv$ $p = \int p_{v} dv$

We can also define the **mean intensity**, J_v : $J_v = 1/4\pi \int I_v d\Omega$

 J_{ν} = specific intensity averaged over all solid angles Ω

Radiation pressure

Consider an enclosure containing an isotropic radiation field. The pressure of radiation on the wall is given by,

$p_{\nu} = (2/c) \int I_{\nu} \cos^2 \theta d\Omega$

except that now (1) we have a factor of 2 because each photon exerts twice its normal component of momentum on reflecting from the wall, and (2) the integral is only over 2π (one hemisphere).

By definition, an isotropic radiation field has no angular dependence, so $I_{\nu} = J_{\nu}$. The total radiation pressure is then,

$p = (2/c) \int J_{v} dv \int \cos^{2} \theta d\Omega$

Doing the integral over solid angle gives (Tut sheet 1, Q1: do this integral),

$$p = (4 \pi / 3 c) \int J_v dv$$

$$p = (1 / 3) u$$

Result: The radiation pressure of an isotropic radiation field is one third of the energy density of the radiation.

Radiative transfer equation

Earlier, we defined the specific intensity and showed that in free space it was constant along a ray

$$dI_{\nu}/ds = 0$$

We now consider a medium in which there may be emission and/or absorption.

Emission

Define the spontaneous **emission coefficient** *j*. This is the energy emitted per unit time per unit solid angle and per unit volume,

$$dE = j dV d\Omega dt$$

As usual, we can also define a monochromatic version which is per unit frequency,

 $dE = j_{\nu} \, dV \, d\Omega \, dt \, d\nu$

which has units of W m⁻³ Hz⁻¹ sr⁻¹. In going a distance ds, a beam of radiation sweeps out a volume dV = dA ds, where dA is the area. The change in the intensity due to spontaneous emission is,

$$dI_{\nu} = j_{\nu} ds$$

Note: we restrict ourselves to *spontaneous* emission. There can also be *stimulated* emission, but this depends upon I_{ν} and is more conveniently treated as "negative absorption."

Related quantities

The emission coefficient can vary with angle (i.e., more emission in some directions than others). Simplifications are possible for an isotropic emitter. Then.

$$j_{\nu} = \frac{1}{4\pi} P_{\nu}$$

where P_v is the emitted power per unit volume per unit frequency.

Another related quantity is the **emissivity** ε_{ν_3} defined as the power emitted spontaneously per unit mass per unit frequency. The emissivity is integrated over all angles. For an isotropic source,

$$dE = \varepsilon_{\nu} dm \, dt \, d\nu \frac{d\Omega}{4\pi}$$

The last factor is the fraction of energy radiated into $d\Omega$. Using $dm = \rho dV$, where ρ is the density we find,

$$dE = \varepsilon_{\nu} dm \, dt \, d\nu \frac{d\Omega}{4\pi} = j_{\nu} \, dV \, dt \, d\nu \, d\Omega$$

and hence the relation between the emissivity and the emission coefficient is

Lecture 2 revision quiz

- Suppose a star radiates isotropically with specific intensity I_{ν}
 - What is the mean intensity J_{v} at the surface of the star?
 - What is the mean intensity at distance a from the centre of a star of radius R?
 - Sanity check: is your answer to the second part valid at the surface, where a = R?
- Integrate $\int d\Omega$, $\int \cos \theta d\Omega$ and $\int \cos^2 \theta d\Omega$ to verify that there are no mistakes in the lecture notes. Which radiant quantity do you associate with each of these 3 integrals?
- Fill in the steps in the derivation to derive the inverse square law.
- For an isotropic radiation field compute the flux and mean intensity, and show that the radiation pressure p = u/3
- What's the difference between emission coefficient j_{ν} and emissivity ε_{ν} ?