1. Nebular radiative transfer problems involving scattering in the vicinity of a stellar source of photons often require us to compute the mean intensity J_ν. Show that, for a star of radius R whose photosphere emits isotropically with uniform specific intensity I_ν, the mean intensity at distance r from the star is

$$J_\nu = \frac{I_\nu}{2} \left(1 - \sqrt{1 - \frac{R^2}{r^2}} \right).$$

Hence show that at the stellar surface $J_\nu = I_\nu / 2$ and that at large distances from the star, $J_\nu \rightarrow I_\nu / 4 r^2$.

2. Describe the physical picture of the stages in the expansion of an HII region into a uniform medium. Explain how recombinations in the interior of the region affect the ionizing flux at the front.

3. The O$^{++}$ ion has a triplet 3P term for the ground state with J=0, 1, 2. There is a singlet 1D_2 term at energy ΔE=kT above the ground state, and a singlet 1S_0 term at energy ΔE=kT above the 1D_2 term. Downward transitions from 1S_0 to 1D_2 emit line photons with wavelength 4363 Å. Downward transitions from 1D_2 to 3P_2 and 3P_1 emit at 5007 Å and 4959 Å respectively. Sketch the energy-level diagram showing the five levels and the three lines. Given that the ratio of the lines' Einstein coefficients is $A(\lambda 5007) \sim 3 A(\lambda 4959)$, predict the observed flux ratio of these two lines in the low-density limit where spontaneous emission occurs faster than collisional de-excitation. Justify your reasoning.

4. A distant HII region in the Milky Way is found to have a Balmer recombination line flux ratio $H\alpha/H\beta = 4.0$. Given that this flux ratio is close to 2.86 for unreddened HII regions, and that the extinction A_λ (in magnitudes) varies inversely with wavelength λ, calculate the de-reddening factors by which the observed Hα and Hβ line fluxes must be multiplied to remove the effects of extinction.

5. The electronic energy as a function of the internuclear separation R in a diatomic molecule can be approximated using a potential,

$$E(R) = E_0 \left[1 - e^{-{(R-R_0)/L}} \right]^2 - E_0$$

where E_0, R_0, and L are constants. Sketch this potential, and show that it has a minimum at $R = R_0$.
6. In a Monte Carlo code that simulates emission and scattering in a spherical circumstellar shell, the radial dependence of the emissivity is $j(r) \propto (r / R)^{-\alpha}$, where r is in the range $R < r < R_{\text{max}}$. Derive an expression for randomly sampling the radial location for emitting photons in the shell.

7. The Rayleigh scattering phase function is independent of azimuthal angle, ϕ, and has the dependence on polar angle, θ: $P(\theta) \propto 1 + \cos^2 \theta$. What is the normalization factor so that the scattering phase function is normalized over all solid angles? How would you choose θ and ϕ values to randomly choose a scattering direction? Hint: you may not be able to derive analytic expressions for randomly choosing both θ and ϕ.
1. Use definition of mean intensity and integrate over all solid angles occupied by the star:

\[J_\nu = \frac{1}{4\pi} \int I_\nu d\Omega \]

\[= \frac{1}{4\pi} I_\nu \int_0^{2\pi} d\phi \int_0^{\theta_c} \sin \theta_c d\theta_c \]

\[= \frac{1}{2} I_\nu \left[\cos \theta \right]_0^{\theta_c} \]

\[= \frac{1}{2} I_\nu \left[1 - \sqrt{1 - \frac{R^2}{r^2}} \right] \]

In the asymptotic limit \(r \gg R \) the binomial expansion gives:

\[\left(1 - \frac{R^2}{r^2} \right)^{1/2} \approx \left(1 - \frac{R^2}{2r^2} \right) \]

\[\Rightarrow J_\nu \approx \frac{I_\nu}{4} \frac{R^2}{r^2} \]

2. See lecture notes!

3. See lecture notes on nebular density diagnostics for energy-level diagram of O++.

Given that both lines arise from the same upper state, they are populated at the same rate so the line intensity ratio is the ratio of the transition probabilities

\[I_{5007}/I_{4959} = A_{5007}/A_{4959} = 3. \]

The line ratio \(I_{5007}/I_{4959} \) depends only on the A coefficients, because both lines originate from the same upper level and are depopulated only by spontaneous emission in the low-density limit.
4. The main clue to remember here is that the extinction A_λ is proportional to the optical depth τ_λ, and hence that $\tau_\lambda = \tau_{H\beta}(\lambda_{H\beta}/\lambda)$.

Hence

$$\frac{f_{H\alpha}}{f_{H\beta}} = \frac{f_{H\alpha,0} \exp(-\tau_{H\alpha})}{f_{H\beta,0} \exp(-\tau_{H\beta})}$$

$$\Rightarrow \log\left(\frac{f_{H\alpha}}{f_{H\beta}}\right) = \log\left(\frac{f_{H\alpha,0}}{f_{H\beta,0}}\right) - (\tau_{H\alpha} - \tau_{H\beta})$$

$$= \log\left(\frac{f_{H\alpha,0}}{f_{H\beta,0}}\right) - \tau_{H\beta}\left(\frac{\lambda_{H\beta}}{\lambda_{H\alpha}} - 1\right)$$

Rearrange and substitute observed flux ratios and known line wavelengths:

$$\tau_{H\beta} = \frac{\log(2.86) - \log(4.0)}{(4861/6563) - 1}$$

$$= 1.2986$$

$$\Rightarrow \tau_{H\alpha} = \tau_{H\beta} \times \frac{4861}{6563}$$

$$= 0.9618$$

Dereddening factors are thus

$$\exp(\tau_{H\beta}) = 3.664$$

$$\exp(\tau_{H\alpha}) = 2.616$$

[Sanity check: $2.86 \times 3.664 / 2.616 = 4.0$]
\[
\frac{d}{dR} E_0 \left[1 - e^{-\frac{(R-R_0)}{L}} \right]^2 - E_0 = 2E_0 \left(1 - e^{-\frac{(R-R_0)}{L}} \right) \frac{d}{dR} \left(1 - e^{-\frac{(R-R_0)}{L}} \right)
\]

= 0 when \(R = R_0 \),
so there is a minimum at \(R = R_0 \), where \(E(R) = E_0 \).

There is a faster and more intuitive way to deduce the value of \(R \) where the minimum occurs. The squared quantity inside the square brackets on the LHS cannot take values less than 0, and there is only one minimum. At \(R = R_0 \) this expression is equal to zero, so that must be the minimum.