Local Thermodynamic Equilibrium

- LTE assumptions
- LTE validity
- Saha, Boltzmann equations

Aim to determine:

- Gas pressure, density, absorption coefficients
- Wavelength dependence of emergent radiation field

- Need to know:
 Opacity sources and wavelength dependences
- Level populations: how many atoms can absorb/emit radiation of a given wavelength
- Intensity of local radiation field

But:

- Level populations determined by radiation field & pressure
- Make simplifying assumption that levels determined only by temperature...

LTE

All atomic, ionic, and molecular level populations given by Maxwellian-like Saha-Boltzmann statistics defined by local temperature:

$$N_i / N \sim \exp(-E_i / kT)$$
.

Two variables uniquely define state of gas: temperature and density, via equilibrium relations of statistical mechanics

T describes: velocity distribution energy level populations intensity of black body radiation

LTE Validity

- Detailed Balance:
 Rate process occurs = rate of inverse process
- Transitions: radiative & collisional
- Collisional processes in detailed balance when velocity is Maxwellian
- Radiative processes in detailed balance only if radiation field is isotropic & Planck distribution, $B_{\nu}(T)$
- LTE OK in deepest atmosphere layers: densities high, collision rates large, optical depths large, photons trapped, and radiation field approaches $B_{\nu}(T)$
- Clearly not the case in observable layers
- But LTE makes calculations simple...

Basic Relationships: General & LTE

• Perfect gas law: low densities

• Level populations: Boltzmann

• Ionization stage: Saha

• Velocity distribution: Maxwellian

• Radiation field: Planck (black body)

Matter in LTE

Maxwell Distribution:

$$|n(v)/N dv = (m/2\pi kT)^{3/2} 4\pi v^2 \exp(-mv^2/2kT) dv|$$

Mass = m, total velocity = v, number density = N

High velocity tail due to v^2 factor

Peak => most probable speed, $v_p = (2kT/m)^{1/2}$ Average speed, $v_{av} = (3kT/m)^{1/2}$

Boltzmann Distribution:

$$\frac{n_{r,s}}{n_{r,t}} = \frac{g_{r,s}}{g_{r,t}} \exp[-(\chi_{r,s} - \chi_{r,t})/kT]$$

 n_{rs} = number density of level s of ionization stage r

 $g_{r,s}^{r,s}$ = statistical weight of level s in stage r $\chi_{r,s}$ = excitation energy of (r, s) measured from ground (r, 1)

 $\chi_{r,s}$ - $\chi_{r,t} = hv$ for a radiative transition (r, s) to (r, t)

$$n_{r,s}$$
 relative to total n_r :
$$\frac{n_{r,s}}{n_r} = \frac{g_{r,s}}{U_r(T)} \exp[-\chi_{r,s}/kT]$$

Partition function:
$$U_r = \sum_s g_{r,s} \exp(-\chi_{r,s}/kT)$$

Convenient logarithmic form (base 10):

$$\log \left[\frac{n_{r,s}}{n_r} \right] = \log \left[\frac{g_{r,s}}{U_r(T)} \right] - \theta \chi_{r,s}$$

Excitation potential $\chi_{r,s}$ in eV

 θ = inverse temperature = 5040 / T, when $\chi_{r,s}$ in eV

1 eV = 1.60218 E - 19 J

Partition Functions

- Appear to require total knowledge of energy level structure
- In many cases most atoms/ions are in or near ground state and $g_{r,1}$ dominates U
- At higher T: more excited atoms, approximations exist
- Detailed calculations are tabulated

Saha Ionization Distribution

Population ratio between successive ionization stages is:

$$\frac{N_{r+1}}{N_r} = \frac{1}{N_e} \frac{2U_{r+1}}{U_r} (2\pi m_e k T / h^2)^{3/2} \exp(-\chi_r / kT)$$

 $N_{\rm e}$, $m_{\rm e}$: electron number density and mass

 N_{r+1} , N_r : population densities of ionization $\chi_r = h v_{\text{edge}}$: ionization potential of stage rpopulation densities of ionization stages r, r+1

partition functions U_{r+1} , U_r :

Using perfect gas law, $P_e = N_e k T$:

$$\frac{N_{r+1} P_{e}}{N_{r}} = \frac{2U_{r+1}}{U_{r}} \frac{(2\pi m_{e})^{3/2} (kT)^{5/2}}{h^{3}} \exp(-\chi_{r}/kT)$$

For computations use:

$$\log \frac{N_{r+1} P_{e}}{N_{r}} = \log \frac{2U_{r+1}}{U_{r}} + 2.5 \log T - \theta \chi_{r} - 1.48$$

 $P_{\rm e}$ in Pa, χ_r in eV

Radiation in LTE

Planck Function

LTE line source function simplifies to the Planck Function:

$$S_{v}^{l} = \frac{2hv^{3}}{c^{2}} \frac{1}{\left[\frac{g_{u}n_{l}}{g_{l}n_{u}}\right]_{LTE}} - 1$$
$$= \frac{2hv^{3}}{c^{2}} \frac{1}{\exp(hv/kT) - 1} \equiv B_{v}(T)$$

Equality $S_v = B_v$ is formally derived via Einstein coefficients for bound-bound process, but holds for all LTE or "thermal" photon processes

Wien Approximation

Large
$$v / T$$
: $B_v(T) \approx \frac{2hv^3}{c^2} \exp(hv / kT)$

Particle-like behaviour of high energy photons, similar to Boltzmann distribution

Rayleigh-Jeans

Small ν / T :

$$B_{v}(T) \approx \frac{2hv^2kT}{c^2}$$

Stefan-Boltzman

Integrate
$$B_{v}$$
:
$$B(T) = \int_{0}^{\infty} B_{v} dv = \frac{\sigma T^{4}}{\pi}$$

Stefan-Boltzmann constant:

$$\sigma = \frac{2\pi^5 k^4}{15h^3 c^2} = 5.67 \times 10^{-5} \text{ J m}^{-2} \text{ K}^{-4} \text{ s}^{-1}$$

Fraction of Ionized H in Solar Photosphere

- $T \sim 6000$ K, $\theta = 0.84$, $P_e \sim 3$ Pa, $\log P_e \sim 0.5$
- $U_1 = 1$ (only one state for proton)
- $U_0 = 2$, $g_{0,1} = 2$ (spin up/down)
- χ for higher levels so high that populations negligible

$$\log \frac{N_1}{N_0} = -4$$

• Only 1 in 10⁴ atoms is ionized

How much H⁻ in Solar Photosphere?

- Binding energy $\chi_{-1} = 0.74$ eV. Photons with $\lambda < 1.6 \mu m$ can ionize H⁻ back to H⁰ and free electron
- Both electrons in level 1 so have opposite spins => $g_{-1,1} = U_{-1} = 1$
- Saha: $\log \frac{N_0}{N_{-1}} \Rightarrow N(H^-)/N(H^0) \approx 3 \times 10^{-8}$
- So less than 1 in 10⁷ H atoms is H
- But there's LOTS of H atoms!

Electrons in Stellar Atmospheres

- Solar stars (T~ 6000 K): H mostly neutral, e⁻ from metals (Na, Mg, Al, Si, Ca, Fe) with low ionization potential (5-7eV)
- A stars (T ~ 10 000 K): H ionized, dominant source of e
- O & B stars (T > 20 000 K): He ionized, contributes to e⁻