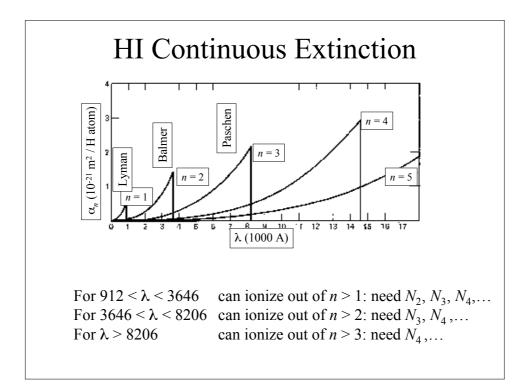
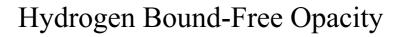
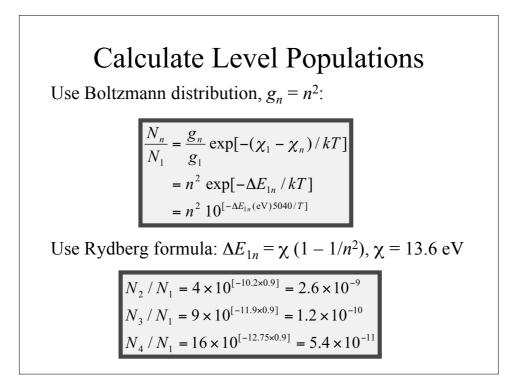
Producing a Theoretical Spectrum

- Pure hydrogen atmosphere, $T_{\rm eff} = 5600 \text{ K}$
- Assume opacity independent of depth
- Determine wavelength dependent opacity
- Determine temperature structure
- Determine emergent flux in optical range 3000 A $< \lambda < 8600$ A





- Level populations for $T_{\rm eff} = 5600 \, {\rm K}$
- Use Boltzmann equation to get populations of H levels *n* = 2, 3, and 4
- Use Kramer's opacity formula to get wavelength dependence



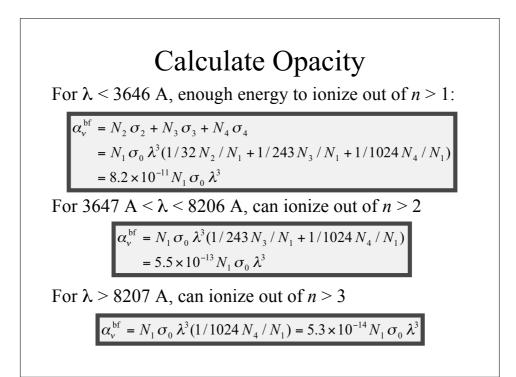
Calculate Opacity Kramer's opacity for hydrogen b-f cross-section (m²)

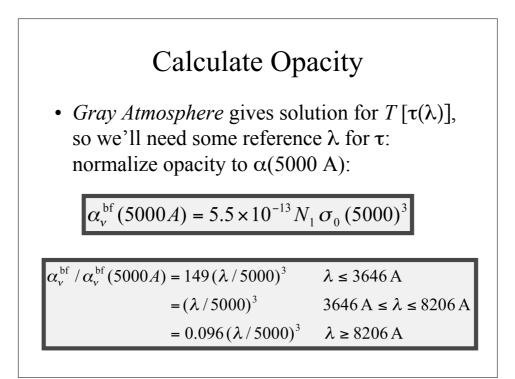
$\sigma_{v}^{ ext{bf}}$	$= 2.815 \times 10^{25} \frac{Z^4}{n^5 v^3} g_{\rm bf} \text{for } v \ge v_0$
	$= 1.044 \times 10^{-30} \lambda^3 / n^5 = \sigma_0 \lambda^3 / n^5$

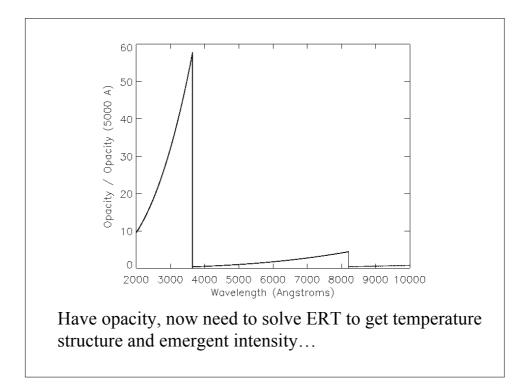
with λ in A. Total opacity = sum of absorption coefficients from all levels that can be ionized by photon at given λ , times population of level:

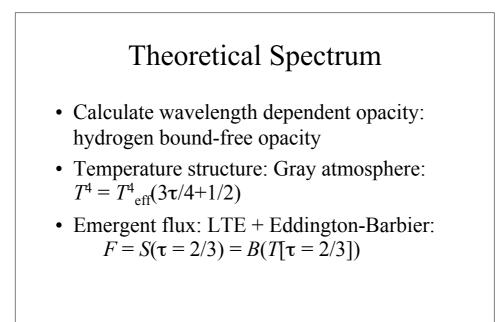
$\alpha_v^{\rm bf} = N_2 \sigma_2 + N_3 \sigma_3 + N_4 \sigma_4$	for $\lambda \leq 3647$ A
$= N_3 \sigma_3 + N_4 \sigma_4$	for 3648 A $\leq \lambda \leq 8206$ A
$= N_4 \sigma_4$	for $\lambda \ge 8207$ A

Ignore contributions from levels n > 4









Temperature Structure

Assume gray temperature structure: Opacity isn't really gray, so pick 5000A as a representative wavelength: $\tau_{5000} = \tau (\lambda = 5000 \text{ A})$, and assume temperature structure is

$$T^{4}(\tau) = T_{\rm eff}^{4} \left(\frac{3}{4}\tau_{5000} + \frac{1}{2}\right)$$

Eddington-Barbier gives $F(\lambda) = S(\tau_{\lambda} = 2/3) = B(T[\tau_{\lambda} = 2/3])$ Radiation comes from $\tau_{\lambda} = 2/3$, so want temperature at this depth. If $\tau_{\lambda} = 2/3$ then $\tau_{5000} = \tau_{\lambda} / (\kappa_{\lambda} / \kappa_{5000})$. So temperature at $\tau_{\lambda} = 2/3$ is

$$T^{4}(\tau_{\lambda}) = T_{\text{eff}}^{4}\left(\frac{3}{4} \times \frac{2}{3} \left[\kappa_{\lambda} / \kappa_{5000}\right] + \frac{1}{2}\right)$$

