2.4 Energy conservation lI:
Transport.

- The Sun’s interior is hotter than its surface.

+ Existence of a temperature gradient implies an
outward flux of energy.
+ Energy flux is determined by conservation of
energy as just shown.
+ Temperature gradient depends on method of
energy transport:
— Radiative diffusion
— Convective motions
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Flux and radiation pressure
+ From Nebulae/Atmospheres, flux through
surface element dA in frequency interval from n
tov +dvis:

1
F,= ¢1I c0os0.dQ =2n |1 udu
! J
where we have substituted u = cos6.

ie e%
a o,

+ Each photon carries momentum p,=E/c =hv/c
+ Bounces off dA at angle of incidence cos 0 .
* Momentum transferred per photon=2 p cos 0 .
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Pressure = momentum flux

+ Pressure = outward (photons/sec/unit area)
x (2 p,cos 0)
= (in+out)(photons/sec/unit area)
x(p,cos0)

P

rad,v

2 1
1 flv cos’ 0.dQ2 = —nflvuzdu
¢ 47 ¢ -1

+ The factor cos? 6 allows for both foreshortening
of the surface element’s cross-section and
transfer of normal component of momentum.
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Radiative energy transport

+ Specific intensity of beam travelling at angle 6 to
radial direction in medium of density p, opacity x,
and source function S:

dl
cos6 d” = px (S, — 1,). Multiply both sides by
r

u = cos O, and integrate :
1

1

1
f;f d—”du = vafu du(S, -1,) s,isisotropic
21

T e

d
= — (I, u*du = px S du-px, (I,ud
dr_flvuupvv_fupv_flvuu
cf.Radiation pressure cf. Flux
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Radiative-equilibrium
temperature gradient

+ We find that the opacity determines the
temperature gradient:

dP dP
c rad,v _ —Kva, — “ rad _ —@F
dr dr c

where we define a flux - weighted mean opacity,

K = KvdeV/ Fdv.ButP, =—=-al",
[ehav /] 373

P 4 T
od—rad=—aT3d—. Also F = Lz,
dr 3 dr Ao r
= dT(I’) = — 3Kp L(I’) Another equation
dr 4acT3 47 ,,2 and a new variable, T(r).
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Convective equilibrium

+ Suppose temperature gradient is radiative.
+ Is it stable to small local perturbations?

+ Suppose a blob of mass dm at radius r has its
temperature perturbed by a small amount:

AT(r) =Ty, (r) = T(r).
+ Pressure will change by
AP(r) = P, (r)— P(r).
+ but pressure balance is quickly restored by a

change in volume, to give density difference from
surroundings:

Ap(r) = p,, (r) = p(r).
+ Temperature excess with pressure equilibrium in
ideal gas — density deficiency — buoyancy.
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+ If AT > 0, buoyant force >
gravity, so blob rises to new

Buoyant stability

r+Ar T+dT, P+dP, p+dp

position at r+Ar.
+ Surroundings at new position

have density

dp ; dm

p(l’) + - AI’ T(I’), P(I'), P(r)

-
+ while blob changes density to
match local pressure:

P, () + (d—p) Ar
Y/ sm d d
* Element is stable if it becomes ‘(_p) > ‘(_p)
denser than surroundings, i.e. if: dr dr/ sm
* ldeal :
eI p o ol = |(d—T) < (d—T) for stability.
dr dr Sm
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Adiabatic changes

+ Rising blob is hotter than its surroundings as it

rises so can only lose heat (& vice versa for
falling blob).

* Hence change in temperature with r must be

less than adiabatic (no heat loss) value :

(5 <[5 |
dr/ s, \Ndr/ .l

+ Adiabatic gradient is given by: ,

PV’ =const = P x p' oc(—) , Where y :&
T C,

= P"'T" = const
PdT

dP
= (1-y)— ———=0.
( y)dr-l-der
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Logarithmic T-P gradients

+ For an adiabatic blob, we thus get:

l(d_T) _V—ll(d_P)
T\dr/ 4 y P\dr
- or:

.

(dlogT) -1
dlogP) , %

+ Use hydrostatic equilibrium to get a similar T-P
relation for the radiative gradient:

(dlog T) _ 3kL(r)P
dlogP) , 16macT*GM’
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Convective stability criterion

+ Remembering that pressure is the same inside
and outside blob at all times, we can write the
stability criterion as:

|( dlog T) 3 ( dlog T)
dlogP) dlogP) |

3xL(r)P LY -1
16wacT'GM ¢y
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Convectively unstable regions

* (1) Cores of massive stars:

Radiation flux L(r)/4sm r* can become very
large while opacity kp remains small in the

centres of main massive main - sequence stars.

* (2) Outer envelopes of cool stars:

AS 4013

Adiabatic exponent y can approach unity in
sub - surface ionization zones in cool stars.
Hence (y —1)/y can become small, and

convection will set in at quite low values
of [(dT/dr),,,|.
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Energy transport

+ In formulating stellar structure problem, use a
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single expression for the temperature gradient:

dlogT dlogT dlogT
dlog P dlogP) _, dlog P) ,

where & characterizes the convective efficiency :
& = 0 = radiative equilibrium
& =1 => adiabatic convection
0 < & < 1=> non - adiabatic convection: & must

be determined from convection theory.
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2.5.1 Constitutive relations

- Still need additional equations to describe p, ¢, x, §

and (dlogT/dlogP) in terms of:
— the state variables T and P, and
— the composition of the stellar material (X,Y,Z or X; )

+ The following constitutive relations close the

AS 4013

system of ODEs:
p=p(P,T,X,) (equation of state)

e=¢e(p,T,X,) (nuclear energy generation rate)
Kk=x(p,T,X) (opacity)

§=&8p,T,X) (convective efficiency)

dlogT

(p,T,5,x,X,) (energy transport)
dlogP
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2.5.2 Equations of stellar structure

+ We have now determined the four basic (time-

independent) equations of stellar structure.

+ Use mass continuity to transform them to have

enclosed mass as the independent variable.

+ Mass continuity: dr 1

dm  4m’p

+ Conservation of energy: 1.

— =€
dm

* Hydrostatic equilibrium:  ;p Gm

dm  4mr

- Energy transport: dT Gm T dlogT
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dm  4xr' PdlogP

Stellar Physics

Page




2.5.3 Boundary conditions

+ To solve a system of n ODEs, we need to specify n
boundary conditions.

+ In Lagrangian frame, boundaries are at the centre
(m=0) and the surface (m=M).

At the centre:
rm=0)=0
Lm=0)=0

At the surface :

| RRE
T =)= T~ 1)

P . (m=M)=0

gas
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2.5.4 Solution

- Solution of equations of stellar structure gives the
run of P, T, m and L as functions of r throughout
the domain 0 <r <R.

+ Solutions are characterized uniquely by
— Total mass of star M = m(R)
— Run of chemical composition through star.
— Gravitational binding energy.

+ Gives quantitative description of stellar interior.
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