

Spin and polarization				
• Need to allow for intrinsic angular momentum or spin of particles, or for different polarizations of photons: $g(p)dp = g_s \frac{V}{h^3} 4\pi p^2 dp$				
Partition function				
	Particle type	Spin	g₅	Comment
	p, n, e	1/2	2	
	ν	1/2	1	Only 1 polarization
	photons	1	2	2 independent polarizations
				for EM wave.
AS 3003 Stellar Physics				

5.3 Pressure in an ideal gas – 1

$$P = -\frac{\partial E}{\partial V}\Big|_{N,S} = -\int_{0}^{\infty} \frac{\partial \varepsilon_{p}}{\partial V} f(\varepsilon_{p})g(p)dp.$$
Use $\frac{\partial \varepsilon_{p}}{\partial V} = \frac{\partial \varepsilon_{p}}{\partial p} \frac{\partial p}{\partial V}$. Since $V = L^{3}$ and $p \propto L$, get
 $p \propto V^{-1/3} \Rightarrow \frac{dp}{dV} = -\frac{p}{3V}.$
Also $\varepsilon_{p}^{2} = p^{2}c^{2} + m^{2}c^{4} \Rightarrow 2\varepsilon_{p} \frac{\partial \varepsilon_{p}}{\partial p} = 2pc^{2}$
 $\Rightarrow \frac{\partial \varepsilon_{p}}{\partial p} = \frac{pc^{2}}{\varepsilon_{p}} \equiv v_{p}, \text{ so }: \frac{\partial \varepsilon_{p}}{\partial V} = -\frac{pv_{p}}{3V}.$
Speed of particle
with momentum p Stellar Physics

