Thermonuclear Physics

· Four fundamental forces:

Force	Source	Range	Nuclear
			reactions?
gravitational	mass	1/r²	No
electrostatic	charge	1/r²	Yes
weak nuclear	baryon-lepton	1/r": w>>2	Some
strong nuclear	baryon-baryon	1/rs: s>>2	Yes

 Electrostatic repulsion between +vely charged nuclei gives potential:

$$E_{\text{pot}} = \frac{q_1 q_2}{4\pi\varepsilon_0 r} \approx 2.3 \times 10^{-13} \text{ J for protons.}$$

Average KE of proton at 2x10⁷ K is: velocity distribution,

$$E_{\rm kin} = \frac{3}{2}kT \approx 4 \times 10^{-16} \text{ J}.$$

Given a Maxwellian velocity distribution, only ~ 1 proton in 10⁸ has enough KE to get over this Coulomb barrier.

AS 3003

Stellar Physics

Quantum mechanical description

• Schrödinger equation for proton wavefunction:

$$\frac{d^2\psi}{dr^2} + \frac{2m}{\hbar^2} (E_{\rm kin} - E_{\rm pot})\psi = 0.$$

For $r > r_1$ and $r < r_2$,

$$(E_{\rm kin} - E_{\rm pot}) > 0 \Rightarrow \psi \text{ is real. } \mathbf{E}_{\rm pot}$$

 $r > r_1$: $\psi \sim \sin kr$

 $r_2 < r < r_1$: $\psi \sim e^{-kr}$

 $r < r_2$: $\psi \sim \sigma \sin kr$

where $k = \frac{2m}{h^2} (E_{kin} - E_{pot})$, and

 σ = probability of barrier penetration.

AS 3003

Stellar Physics

Two things we need to know

- Reaction rate:
 - Related to tunnelling probability and energy distribution of particles.
 - Can calculate penetration probability and hence reaction cross-section from Schrödinger eq.
- **Energy released:**
 - approximately, the binding energy per nucleon.
 - All nuclei consist of Z protons and N neutrons.
 - Total rest mass energy of individual particles > rest mass energy of nucleus.
 - Deficit represents binding energy of nucleus:

$$Q(Z,N) = [Zm_{\rm p} + Nm_{\rm n} - m(Z,N)]c^2$$
 – (=net energy released during construction of nuclide.)

Also need to know how much of this energy is "lost" in the form of neutrinos.

AS 3003 **Stellar Physics**

Thermonuclear cross-sections

Calculated from

$$\sigma(E) = \frac{S(E)}{E} e^{-(E_{G}/E)^{1/2}}$$

where E_G is the Gamow energy:

$$E_{\rm G} = (\pi \alpha Z_i Z_j)^2 2\mu c^2$$
Fine structure constant

Reduced mass

$$\alpha = \frac{e^2}{4\pi\varepsilon_0 hc} \approx \frac{1}{137}$$

$$\mu = \frac{m_i m_j}{m_i + m_j}$$

 S(E) depends on nuclear physics of the reaction and is in practice very difficult to measure.

AS 3003 Stellar Physics

Thermonuclear rate coefficients

- To convert tunnelling probability to reaction rate r_{ij} (reactions s⁻¹ kg⁻¹):
 - average over particle velocities to get temperature dependence:

$$\langle \sigma v \rangle = \int_{0}^{\infty} \sigma v N(v) dv / \int_{0}^{\infty} N(v) dv,$$

e.g. Maxwellian distribution at temperature T

- then multiply by number densities:

$$r_{ij} = n_i n_j \langle \sigma v \rangle / \rho$$
.

• If \mathbf{Q}_{ij} is the energy released per reaction ij, total energy released is:

$$\varepsilon_{ij}(\rho,T,n_i,n_j) = r_{ij}Q_{ij}.$$

AS 3003 Stellar Physics

Thermonuclear networks

- Common networks: pp chain, CN(O) cycle.
- Reaction rate of a thermonuclear network depends on slowest reaction in network.
- Energy released per product nucleon is that for entire cycle:

$$\varepsilon_{\text{cycle}} = r_{\text{slowest}} Q_{\text{cycle}}$$
.

AS 3003 Stellar Physics

AS 3003 Stellar Physics

Reaction rates for pp chains

 e.g. slowest reaction in any of the pp chains is the pp reaction itself:

$$r_{\rm pp} \sim \frac{\rho}{T_6^{2/3}} X_{\rm H}^2 e^{25.44 - 33.81/T_6^{1/3}}$$
. $T_6 = T/10^6 \text{ K}$

- Energy released depends how far chain goes.
- Choice of pp-chain governed mainly by relative abundances of individual species:
 - pp II and III dominate when ⁴He is abundant; deplete ⁷Li.
 - PPIII is rare but produces the most energetic neutrinos.
- Approximate reaction rate for pp chain:

$$\varepsilon_{\rm pp} \approx 120 \left(\frac{X_{\rm H}}{0.5}\right)^2 \left(\frac{\rho}{10^5 {\rm m}^{-3}}\right) \left(\frac{T}{15 \times 10^6 {\rm K}}\right)^4 {\rm Wm}^{-3}.$$

AS 3003 Stellar Physics

Reactions of the CN cycles

$$p+^{12}C \rightarrow^{13}N + \gamma$$

$$^{13}N \rightarrow^{13}C + e^{+} + \nu_{e}$$

$$p+^{13}C \rightarrow^{14}N + \gamma$$

$$p+^{14}N \rightarrow^{15}O + \gamma$$

$$^{15}O \rightarrow^{15}N + e^{+} + \nu_{e}$$

$$p+^{15}N \rightarrow^{12}C+^{4}He$$

$$CNO cycle (less important)$$

$$p+^{14}N \rightarrow^{15}O + \gamma$$

$$p+^{14}N \rightarrow^{15}O + \gamma$$

$$^{15}O \rightarrow^{15}N + e^{+} + \nu_{e}$$

$$p+^{15}N \rightarrow^{16}O + \gamma$$

CNO cycle (less important)

 $^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ + \nu_e$ $p+^{15}N \rightarrow ^{16}O + \gamma$ $p+^{16}O \rightarrow^{17}F + \gamma$

CN cycle (most important)

 $^{17}\text{F} \rightarrow ^{17}\text{O} + e^+ + v_a$ $p + {}^{17}O \rightarrow {}^{14}N + {}^{4}He$

AS 3003

Stellar Physics

Reaction rates for CN cycles

Reaction rate is controlled by p+¹⁴N → ¹⁵O +γ:

$$r_{\rm CN} \sim \frac{\rho}{T_6^{2/3}} X_{\rm H} X_{\rm N14} e^{74.4-152.3/T_6^{1/3}}.$$

- Rate is cycle dependent since conversion of ¹²C and ¹⁶O to ¹⁴N modifies ¹⁴N abundance.
- High Coulomb barriers: strong T dependence.
- Energy produced ~25.02 MeV, independent of cycle.
- Abundance of ¹⁴N in Sun is 0.6%

anywhere from 13 to 18

Approximate reaction rate for CN cycle:

$$\varepsilon_{\rm CN} \approx 2.0 \left(\frac{X_{\rm H}}{0.5}\right) \left(\frac{X_{\rm N14}}{0.006}\right) \left(\frac{\rho}{10^5 \text{ m}^{-3}}\right) \left(\frac{T}{15 \times 10^6 \text{ K}}\right)^{16} \text{ Wm}^{-3}.$$

AS 3003

Stellar Physics

Triple- α reactions

 Once H has been completely converted to He, next most favourable reaction is:

4
He+ 4 He→ 8 Be+ γ -91.8 keV (endothermic!)
 4 He+ 8 Be→ 12 C*+ γ -287.7 keV (")
 12 C*→ 12 C+{2 γ or e⁺+e⁻) +7.65 MeV

- High threshold: 4He+8Be fusion needs T>108 K.
- Need high energy ⁴He to collide with ⁸Be within 10⁻¹⁶ s to prevent ⁸Be decaying again to 2α.
- Once formed, most ¹²C* decay back to ⁸Be+ ⁴He, but a few survive to decay via photon cascade or positron-electron pair emission.
- To estimate ε, see Phillips pp125-126.

AS 3003 Stellar Physics

Neutrinos

- Produced as electron (or positron) decay capture products.
- Capture cross section: $\sigma_{v} \approx 10^{-48} (\varepsilon_{v} / \text{MeV})^{2} \text{ m}^{2}$
- Hence mean free path: $\lambda_{v} \approx 10^{21} (\varepsilon_{v} / \text{MeV})^{-2} / \rho \text{ m}$
- · i.e. neutrinos escape more or less unimpeded.
- Neutrino losses account for only a small fraction of energy produced in pp, CN and 3α.
- i.e. little effect on main-sequence or red-giant structure & evolution.
- Important in stellar collapse: neutrino flux ~ photon flux during final stages of collapse in SN explosion.
- Can get λ_ν ~ 25m in supernova core!

AS 3003 Stellar Physics