Interpreting Spectra

- Pure hydrogen atmosphere => doesn't look like solar spectrum
- Dominant optical opacity in Sun?
- Dominant optical opacity in A stars?
- Temperature & pressure diagnostics

Negative Hydrogen

- H- identified as dominant solar opacity
- Only 1 in 10⁷ H atoms in solar photosphere is H⁻, so why is it so important?
- In optical, only H atoms in level n = 3 can contribute to absorption
- $3646 \text{ A} < \lambda < 8206 \text{ A} => \text{absorption to } n = 3$
- $\lambda > 8206 \text{ A} \Rightarrow \text{absorption to } n = 4$
- Ionization potential of H⁻ is 0.754 eV, λ < 1.65 μ m
- All H- ions contribute to visual opacity

Compare density of H⁻ ions with neutral hydrogen in the n = 3 level at T = 6000 K. Use Boltzmann equation

$$\log \frac{n_{0,s}}{n_{0,1}} = \log \frac{g_{0,s}}{g_{0,1}} - \theta \chi_{0,s}$$

$$\log \frac{n_{0,s}}{n_{0,1}} = \log \frac{g_{0,s}}{g_{0,1}} - \theta \chi_{0,s}$$

$$\chi_{0,2} = 10.15 \text{ eV (Balmer) } g_{0,2} = 2^2$$

$$\chi_{0,3} = 12.10 \text{ eV (Paschen) } g_{0,3} = 3^2$$

Boltzmann gives:
$$\log \frac{n_{0,2}}{n_{0,1}} \cong -7.9 \quad \frac{n_{0,2}}{n_{0,1}} \cong 1.2 \times 10^{-8}$$
$$\log \frac{n_{0,3}}{n_{0,1}} \cong -9.2 \quad \frac{n_{0,3}}{n_{0,1}} \cong 6 \times 10^{-10}$$

At T = 6000 K, only about 1 in 10^8 H atoms is not in ground level

Approximate total hydrogen number density as

$$n_0(H) \approx n_{0,1}(H) \Rightarrow \frac{n_{0,3}(H)}{n_0(H)} = \frac{n_{0,3}(H)}{n_{0,1}(H)}$$

Calculate relative importance of H⁻ in optical from

$$\frac{n_{0,3}(H)}{n(H^{-})} = \frac{n_{0,3}(H)}{n_0(H)} / \frac{n(H^{-})}{n_0(H)}$$
$$\frac{n_{0,3}(H)}{n(H^{-})} = \frac{6 \times 10^{-10}}{3 \times 10^{-8}} = 2 \times 10^{-2}$$

Where $n(H^-)/n_0(H)$ calculated before (LTE lecture) H- absorption ~100 times more than Paschen continuum, $(3646 < \lambda < 8206)$ since cross sections are similar. Absorption $\sim n\sigma$

What about Balmer continuum (912 $< \lambda < 3646$)?

$$\frac{n_{0,2}(H)}{n(H^{-})} = \frac{1.2 \times 10^{-8}}{3 \times 10^{-8}} = 0.4$$

So in Balmer continuum bound-free opacity due to absorptions to n = 2 is comparable to H⁻ opacity

Opacity determined by $n\sigma$. σ from atomic physics. n depends on species present and level populations

In solar type stars ($T \sim 6000$ K), shown that in optical H⁻ opacity dominates over Paschen continuum opacity (photoionization from n = 3), but in Balmer continuum (n = 2) H bound-free is comparable to H⁻

How does stellar type effect H⁻ opacity?

Recall Saha equation using electron pressure

$$\log \frac{N(H^{0}) P_{e}}{N(H^{-})} = \log \frac{2g_{0}}{g_{-}} + 2.5 \log T - \theta \chi_{r} - 1.48$$

$$\log \frac{N(H^{-})}{N(H^{0})} = \log P_{e} - \log \frac{2g_{0}}{g_{-}} - 2.5 \log T + \theta \chi_{r} - 1.48$$

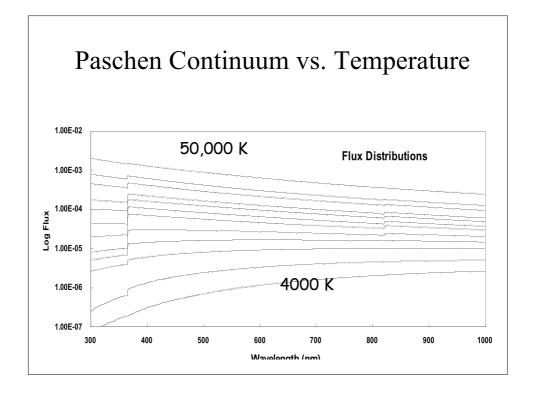
Depends on $P_{\rm e}$, so H⁻ more important in main sequence stars than giants of same temperature due to $P_{\rm e}$ proportionality

H and H- Opacity in A Stars

A star: $T = 10^4$ K, $\log P_e = 2.0$, $\log T = 4.0$, q = 0.5

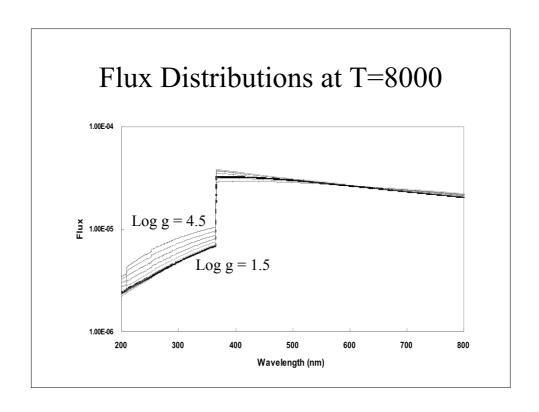
$$\log \frac{N(H^0)}{N(H^-)} = \log \frac{2g_0}{g_-} + 2.5\log T - \theta \chi_r - 1.48 - \log P_e \approx +6.7$$

$$\frac{N(H^-)}{N(H^0)} \approx 2 \times 10^{-7}$$


So $n(\overline{H}^-)/n_0(H)$ is about six times more than solar value Compare H atoms in n = 3 (Paschen continuum)

$$\frac{N_{0,3}}{N_{0,1}} \approx 10^{-5} \Rightarrow \frac{N_{0,3}}{N(H^{-})} = \frac{10^{-5}}{2 \times 10^{-7}} \approx 0.5 \times 10^{2}$$

About 100 times more H atoms in n = 3 than H⁻ ions Neutral H is dominant optical opacity in A stars Large changes in opacity across Paschen and Balmer limits Prominent Balmer and Paschen jumps in spectra of A stars


The Paschen Continuum

- The Paschen continuum slope (B-V) is a good temperature indicator
- Varies smoothly with changing temperature
- Slope is negative (blue is brighter) for hot stars and positive (visual is brighter) for cooler stars
- B-V works as a temperature indicator from 3500K to 9000K (but depends on metallicity)
- For hotter stars, neutral H and H- opacities diminish, continuum slope dominated by Planck function, and the Rayleigh-Jeans approximation gives little temperature discrimination

The Balmer Jump

- The Balmer Jump is a measure of the change in the continuum height at 3647A due to hydrogen bound-free absorption
- Measured using U-B photometry
- Sensitive to temperature BUT ALSO
- Sensitive to pressure or luminosity (at lower gravity, the Balmer jump is bigger recall that κ_{bf} depends on ionization, and hence on P_e)
- Works for 5000 < Teff < 10,000 (where $H_{\rm bf}$ opacity is significant)

