AS4023 STARS

STELLAR STRUCTURE

Problem Sheet 1

1. Calculate the dynamical, Kelvin and nuclear timescales for main-sequence stars of 1 and $20 M_{\odot}$ (you may suppose that $L \propto M^{3.8}$ and $R \propto M^{0.8}$). Sketch the nuclear timescale as a function of main-sequence mass. $\left[1.77 \times 10^{3} \mathrm{~s} ; 3 \times 10^{7} \mathrm{y} ; 7 \times 10^{9} \mathrm{y}\right.$; $\left.1.44 \times 10^{4} \mathrm{~s} ; 1.24 \times 10^{4} \mathrm{y} ; 1.6 \times 10^{6} \mathrm{y}\right]$
2. A shell of matter enclosing a mass m_{0} is initially at rest, with radius r_{0}. The energy conservation equation may be written:

$$
\frac{1}{2}\left[\frac{d r}{d t}\right]^{2}=\frac{G m_{0}}{r}-\frac{G m_{0}}{r_{0}}
$$

Integrating and using substitutions $x=r / r_{0}, x=\sin ^{2} \theta$, or otherwise, show that the timescale for gravitational collapse can be written as

$$
t_{F F}=\left(\frac{3 \pi}{32 G \rho}\right)^{1 / 2}
$$

3. Derive the equations for convective instability:

$$
\frac{P}{\rho} \frac{d \rho}{d P}>\frac{1}{\gamma}
$$

and for the temperature gradient under convective equilibrium:

$$
\frac{d \ln T}{d \ln P}=\frac{\gamma-1}{\gamma}
$$

4. Transform the four ordinary differential equations of stellar structure and their boundary conditions from Eulerian to Lagrangian coordinates.
5. Consider a solar-mass protostar with radius $10^{11} \mathrm{~m}$ and average internal temperature $30,000 \mathrm{~K}$. What would its average internal temperature be after contracting to a radius of $10^{9} \mathrm{~m}$?
6. The Virial theorem provides an estimate for the average internal temperature of a contracting star, $k T \simeq G \mu m_{H} M^{2 / 3} \rho^{1 / 3}$. Electrons become degenerate at a point where $\rho \simeq \mu m_{H}\left(m_{e} k T\right)^{3 / 2} / h^{3}$. Derive expressions for the radius, density, and temperature of a star at this point, assuming that nuclear reactions are not ignited. What values do these take for a solar-mass star?
7. If the internal density distribution of a sequence of chemically homogeneous stars is given by $\rho=\left(M / R^{3}\right) F_{\rho}(x)$, where M and R are the stellar mass and radius and $F_{\rho}(x)$ is a function of radius $x=r / R$, and if the equation of state is given by $P \propto \rho T$, show that: $m=M \cdot F_{M}(x), P=\left(M^{2} / R^{4}\right) F_{P}(x)$ and $T=(M / R) F_{T}(x)$, where $F_{M}(x), F_{P}(x)$ and $F_{T}(x)$ are also functions of radius only. If the opacity κ and nuclear energy generation rate ϵ are given respectively by $\kappa \propto \rho T^{-3.5}$ and $\epsilon \propto \rho T^{\nu}$, show that

$$
L_{r a d}=\frac{M^{5.5}}{R^{0.5}} F_{r a d}(x) \quad \text { and } \quad L_{n u c}=\frac{M^{2+\nu}}{R^{3+\nu}} F_{n u c}(x) .
$$

Hence derive the mass-radius and mass-luminosity relations for solar-type ($\nu=4$) and massive $(\nu=15)$ stars.

