2.3 Relating Eulerian / Lagrangian descriptions

- Reminder: consider a function $\mathrm{Q}(\mathrm{t})$

$$
\frac{d Q}{d t}=\frac{Q(t+\delta t)-Q(t)}{\delta t}
$$

- Now make Q a function of two variables:

$$
\frac{d Q}{d t}=\frac{Q(\underline{r}+\delta \underline{r}, t+\delta t)-Q(\underline{r}, t)}{\delta t}
$$

- $\underline{r}=$ position of fluid element at time t
- $\underline{r}+\delta \underline{r}=$ position of same fluid element at time $t+\delta t$

-First of all, separate out the variation in \underline{r} and t

$$
\begin{aligned}
& \quad Q(\underline{r}+\delta \underline{r}, t+\delta t)-Q(\underline{r}, t) \\
& =\underline{Q(\underline{r}, t+\delta t)-Q(\underline{r}, t)}+Q(\underline{r}+\delta \underline{r}, t+\delta t)-Q(\underline{r}, t+\delta t) \\
& \text { Variation in time } \mathrm{t} \text { at fixed } \mathrm{r}
\end{aligned}
$$

- Then, write the numerator as an expansion in $\delta \underline{r}$ and δt

Remember that

$$
\left\{\begin{array}{l}
Q(t+\delta t)=Q(t)+\delta t \frac{\partial Q}{\partial t}+\ldots . \\
Q(\underline{r}+\delta \underline{r})=Q(\underline{r})+\delta \underline{r} \cdot \underline{\nabla} Q+\ldots
\end{array}\right.
$$

So

$$
\begin{aligned}
& Q(\underline{r}+\delta r, t+\delta t)-Q(r, t) \\
& =\delta t \frac{\partial Q}{\partial t}+\ldots . .+\delta \underline{r} \cdot \underline{\nabla} Q+\ldots
\end{aligned}
$$

- So we have:

$$
Q(\underline{r}+\delta \underline{r}, t+\delta t)-Q(\underline{r}, t)
$$

$$
\approx \frac{\partial Q}{\partial t} \delta t+\delta \underline{r} \cdot \underline{\nabla} \underline{Q}
$$

$$
\text { Evaluated at } t+\delta t
$$

$$
\approx \frac{\partial Q}{\partial t} \delta t+\delta r \cdot\left[\nabla Q+\delta t \frac{\partial}{\partial t} \nabla Q\right]
$$

Evaluated at t

- finally:

$$
\begin{aligned}
\frac{d Q}{d t} & =\frac{Q(\underline{r}+\delta \underline{r}, t+\delta t)-Q(\underline{r}, t)}{\delta t} \\
& \approx \frac{\frac{\partial Q}{\partial t} \delta t+\delta \underline{r} \cdot\left[\underline{\nabla} Q+\frac{\partial}{\partial t} \underline{\nabla} Q \delta t\right]}{\delta t} \\
& \approx \frac{\partial Q}{\partial t}+\frac{\delta \underline{r}}{\delta t} \cdot \underline{\nabla} Q
\end{aligned}
$$

But this is just the velocity!

- Hence if the flow velocity is \underline{u}

NB: In a steady state the Eulerian time derivative would be zero, but the Lagrangian time derivative would only be zero if Q was also uniform.

2.4 Streamlines and streamfunctions

- We can write a 2D flow $\underline{\mathbf{u}}(\mathrm{x}, \mathrm{y})$ in terms of a scalar ψ (known as a stream function) such that

$$
u_{x}=-\frac{\partial \psi}{\partial y}, u_{y}=\frac{\partial \psi}{\partial x}
$$

- Hence \underline{u} is divergence-free

A streamline is defined as a curve that has \underline{u} in the tangential direction,

$$
\begin{aligned}
& \frac{d x}{u_{x}}=\frac{d y}{u_{y}} \\
& \Rightarrow u_{y} d x-u_{x} d y=0 \\
& \Rightarrow \frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y=d \psi=0
\end{aligned}
$$

Hence ψ is constant on a streamline.

Reminder

- If Q is a scalar:

$$
\begin{aligned}
\underline{u} \cdot \underline{\nabla Q} & =u_{x} \frac{\partial Q}{\partial x}+u_{y} \frac{\partial Q}{\partial y}+u_{z} \frac{\partial Q}{\partial z} & & \text { cartesians } \\
& =u_{r} \frac{\partial Q}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial Q}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial Q}{\partial \phi} & & \text { sphericals } \\
& =u_{R} \frac{\partial Q}{\partial R}+u_{z} \frac{\partial Q}{\partial z}+\frac{u_{\phi}}{R} \frac{\partial Q}{\partial \phi} & & \text { cylindricals }
\end{aligned}
$$

- If \mathbf{Q} is a vector, then ($\underline{\mathbf{u}} . \mathrm{grad}) \mathbf{Q}$ is also a vector, each component of which is (u.grad) acting on each component of Q .
- Hence in cartesians:

$$
\begin{aligned}
(\underline{u} \cdot \underline{\nabla}) \underline{Q}= & \left(u_{x} \frac{\partial}{\partial x}+u_{y} \frac{\partial}{\partial y}+u_{z} \frac{\partial}{\partial z}\right)\left(Q_{x}, Q_{y}, Q_{z}\right) \\
= & {\left[u_{x} \frac{\partial Q_{x}}{\partial x}+u_{y} \frac{\partial Q_{x}}{\partial y}+u_{z} \frac{\partial Q_{x}}{\partial z},\right.} \\
& u_{x} \frac{\partial Q_{y}}{\partial x}+u_{y} \frac{\partial Q_{y}}{\partial y}+u_{z} \frac{\partial Q_{y}}{\partial z}, \\
& \left.u_{x} \frac{\partial Q_{z}}{\partial x}+u_{y} \frac{\partial Q_{z}}{\partial y}+u_{z} \frac{\partial Q_{z}}{\partial z}\right]
\end{aligned}
$$

Question 1

- The temperature variation in a river is

$$
T(x, t)=e^{x} \sin t
$$

- And the river flows with velocity

$$
\underline{u}(x, t)=\left(x t^{2}, 0\right)
$$

- Write down both the Lagrangian and Eulerian temperature derivatives.

Answer 1

- Did you get:

$$
\frac{d T}{d t}=\frac{\partial T}{\partial t}+u_{x} \frac{\partial T}{\partial x}=e^{x} \cos t+x t^{2} e^{x} \sin t
$$

