## 3. Aside on divergence

- Consider a gas flow u through a box with centre P

$x$-comp ${ }^{t}$ of $u$ at $P$ is $u_{x}$


- x -comp ${ }^{\mathrm{t}}$ of u at centre of back face $u_{b} \approx u_{x}-\frac{\Delta x}{2} \frac{\partial u_{x}}{\partial x}$ -" " $"$ front face $u_{f} \approx u_{x}+\frac{\Delta x}{2} \frac{\partial u_{x}}{\partial x}$
- vol of gas crossing back face $/ \sec =\left(u_{x}-\frac{1}{2} \frac{\partial u_{x}}{\partial x} \Delta x\right) \Delta y \Delta z$

-" " front face/sec $=\left(u_{x}+\frac{1}{2} \frac{\partial u_{x}}{\partial x} \Delta x\right) \Delta y \Delta z$
- Net vol/sec flowing in x-direction $=\frac{\partial u_{x}}{\partial x} \Delta x \Delta y \Delta z$
- Similarly, net vol/sec in y-direction $=\frac{\partial u_{y}}{\partial y} \Delta x \Delta y \Delta z$
z-direction =

$$
\frac{\partial u_{z}}{\partial z} \Delta x \Delta y \Delta z
$$

- Total net vol/sec $=\left(\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{y}}{\partial y}+\frac{\partial u_{z}}{\partial z}\right) \Delta x \Delta y \Delta z$
- But this is just

$$
(\underline{\nabla} \cdot \underline{u}) \Delta x \Delta y \Delta z
$$

- So $(\underline{\nabla} \cdot \underline{u})$ is just the volume of gas emerging per second from unit volume.

$$
\begin{array}{ll}
(\underline{\nabla} \cdot \underline{u})<0 \Rightarrow & \text { Gas is flowing in } \\
(\underline{\nabla} \cdot \underline{u})>0 \Rightarrow & \text { Gas is flowing out }
\end{array}
$$



- So...this represents a "flux" of gas
- If we integrate over all the unit volumes in any shape, we get a total flux.

$$
\iiint_{V} \nabla \cdot u d V
$$



- Another way to look at this is to look at the amount of fluid that crosses each surface element dS in time dt:

- Volume of gas that flows through dS each second is $(\underline{u} \cdot \underline{n}) d S$ - Add up all the surface elements dS to get the total volume per second emerging from a volume:

$$
\iint_{S} \underline{u} \cdot d S
$$

-But this is just the same as the divergence that we got before! -So...

$$
\begin{equation*}
\iint_{S} \underline{u} \cdot d S=\iiint_{V} \underline{\nabla} \cdot \underline{u} d V \tag{3.1}
\end{equation*}
$$

-This is the divergence theorem..it applies to a flux of any quantity..heat, charge, sheep...
-The divergence of sheep integrated over a volume is equal to the flux of sheep through the surface of that volume.

