
4. Example: flux of mass

• Consider a volume V whose
surface S is a patchwork of
surface elements dS

• A flow u through the surface has
a component along the outward
normal = u cos!
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• Every second:

– this flow travels a distance
u cos!  in the direction of
dS

– a mass of m = (density.vol)
= " (u cos! dS) flows
through each surface
element dS

• Noting that

• We can write this mass
flux as
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• The total rate at which mass (density ")

flows through the surface S is the sum

over all the elements dS:
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Because as drawn, it

is an outflow
Divergence theorem

• In the absence of sources or sinks of mass, this
must be equal to the rate of change of mass of
the fluid in V, so that
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• Since this must be true for all volumes,

• This is the Eulerian form.
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• The Lagrangian form is

• We can use (4.1) to write
this as

• And by expanding out
the divergence:

• We get
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• NB: in incompressible fluids

• And so the flow is “divergence free”
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Question 2

• If you have a steady, incompressible 2D

flow u=(ux,uy), where uy=-sinh(y)

• Use the equation of mass conservation to

get ux.



Answer 2

• Remember steady and incompressible!
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$ ux = xcosh y( ) + c


