5. Conservation of momentum

Rate of change of momentum $=$ sum of forces

- 5.1 What are the forces acting on a parcel of fluid?
- For any surface within a fluid there is a momentum flux across it (from each side) that has nothing to do with any bulk flow
 but is a consequence of its thermal properties.
- Microscopically (in a perfect gas)
- finite temperature imparts molecules with random motions
- the pressure is the associated (one sided) momentum flux.
- Since these motions are isotropic, the momentum flux locally is:
- independent of the orientation of the surface

- always perp. to the surface (the parallel components cancel out).
- Quick check on units:
- Pressure is a force per unit area
- $\mathrm{P} \sim \mathrm{F} / \mathrm{A}$
- Momentum flux is the rate of flow (rate of change) of momentum through unit area:
- (Momentum/s) / A

- And force is rate of change of momentum...

5.2 Deriving the equation

- Consider a lump of fluid subject to gravity and the inward pressure of the surrounding fluid
- Pressure force on $\underline{\mathrm{dS}}=-\mathrm{pdS}$

- (minus because along inward normal)
- Component of inward pressure force along some direction $\widehat{\underline{n}}$ is

$$
-p \underline{\hat{n}} \cdot d S
$$

- Integrate over the whole surface

$$
-\int_{s} p \underline{\hat{n}} \cdot d \underline{S}=-\int_{V} \underline{\nabla} \cdot(p \underline{\hat{n}}) d V
$$

Divergence theorem

- The total momentum in the volume V is:

$$
\int_{V} \rho u d V
$$

- The rate of change is:

$$
\frac{d}{d t} \int_{V} \rho \underline{u} d V
$$

- The component along $\hat{\underline{n}}$ is:

$$
\left(\frac{d}{d t} \int_{V} \rho u d V\right) \cdot \hat{n}
$$

- Hence equation of motion in direction $\underline{\mathrm{I}}$ is (rate of change of momentum=sum of forces)

Lagrangian
derivative

$$
\left(\frac{d}{d t} \int_{V} \rho \underline{u} d V\right) \cdot \underline{\hat{n}}=-\int_{V} \underline{\nabla} \cdot(p \underline{\hat{n}}) d V+\int_{V} \rho \underline{g} \cdot \underline{\hat{n}} d V
$$

- But note that

$$
\underline{\nabla} \cdot(p \underline{\hat{n}})=\underline{\hat{n}} \cdot \underline{\nabla} p+p \underline{\nabla} \cdot \underline{\hat{n}}^{0}
$$

- And (assuming lump is small) replace $\int d V$ by δV
- So that

$$
\frac{d}{d t}(\rho \underline{u} \delta V) \cdot \underline{\hat{n}}=\underline{u} \cdot \frac{\hat{n}}{} \frac{d}{d t} /(\rho \delta V)+\rho \delta V \frac{d \underline{u}}{d t} \cdot \underline{\hat{n}}
$$

- Hence momentum conservation reduces to

$$
\begin{aligned}
& \rho \delta V \frac{d \underline{u}}{d t} \cdot \hat{\underline{n}}=\delta V(-\underline{\nabla} p+\rho \underline{g}) \cdot \hat{n} \\
& \Rightarrow \\
& \quad \delta V\left(\rho \frac{d \underline{u}}{d t}+\underline{\nabla} p-\rho \underline{g}\right) \cdot \hat{n}=0
\end{aligned}
$$

- Since this is true for all $\delta \mathrm{V}$ and $\hat{\circledR}$

$$
\begin{equation*}
\rho \frac{d \underline{u}}{d t}=-\underline{\nabla} p+\rho \underline{g} \tag{5.1}
\end{equation*}
$$

- Lagrangian form: momentum of a fluid element changes in response to pressure and gravitational forces
- Eulerian form:

$$
\begin{equation*}
\rho \frac{\partial \underline{u}}{\partial t}+\rho(\underline{u} \cdot \underline{\nabla}) \underline{u}=-\underline{\nabla} p+\rho \underline{g} \tag{5.2}
\end{equation*}
$$

- The momentum contained in a fixed grid cell changes as a result of pressure and gravitational forces plus any imbalance in the momentum flux in and out of the cell.

Example

- Consider a flow $\underline{u}=\mathrm{u}_{\mathrm{x}}$ along a pipe in the absence of gravity

- (5.2) gives:

$$
\rho \frac{\partial \underline{u}}{\partial t}+\rho(\underline{u} \cdot \underline{\nabla}) \underline{u}=-\underline{\nabla} p
$$

- The component along the pipe is

$$
\rho \frac{\partial u_{x}}{\partial t}+\rho u_{x} \frac{\partial u_{x}}{\partial x}=-\frac{\partial p}{\partial x}
$$

- If the fluid is incompressible, this gives

- Note: the thermal pressure is associated with random motions in the fluid which are isotropic. It is a scalar (acts the same way in any direction)
- The ram pressure is associated with bulk motions of the fluid. Only a surface whose normal has some component along the direction of flow feels the ram pressure.
- Try putting your hand at the end of a hosepipe! Then rotate it till it's parallel to the flow...you only feel the ram pressure when the flow is "hitting" your hand.

Question 3

- Consider the velocity given in question 1 :

$$
\underline{u}(x, t)=\left(x t^{2}, 0\right)
$$

- Determine (for a steady state) the density variation

$$
\rho(x, y)
$$

- And the pressure variation $p(x, y)$ in the absence of gravity.

