6. The Energy Equation 6.1 Derviation

- From the second law of thermodynamics:
$\mathrm{TdS}=\mathrm{dQ}=\mathrm{dU}+\mathrm{pdV}$ Heat change Internal energy change
- Write this equation for a small element of mass $\delta \mathrm{m}$ with

$$
\begin{aligned}
d Q & =\delta m d q \\
d U & =\delta m d e \\
d V & =\delta m d\left(\frac{1}{\rho}\right) \quad \text { Volume of unit mass }
\end{aligned}
$$

- Where

$$
\begin{array}{cc}
e=\frac{p}{(\gamma-1) \rho} & \text { Internal energy per unit mass } \tag{6.1}\\
\gamma=\frac{c_{p}}{c_{v}} & \text { Ratio of specific heats }
\end{array}
$$

- And s is the entropy per unit mass
- If L is the sum of sources and sinks of energy, we can divide by dt to get

$$
\rho \mathrm{T} \frac{\mathrm{ds}}{\mathrm{dt}}=\rho\left[\frac{\mathrm{d} e}{\mathrm{dt}}+p \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{1}{\rho}\right)\right]=-\mathrm{L}
$$

- We can write this more simply using mass conservation:

$$
\begin{align*}
& \rho \frac{d e}{d t}+p \rho\left(\frac{-1}{\rho^{2}}\right) \frac{d \rho}{d t}=-L \\
\Rightarrow & \rho \frac{d e}{d t}-\frac{p}{\rho} \frac{d \rho}{d t}=-L \tag{6.2}\\
\Rightarrow & \rho \frac{d e}{d t}+p \underline{\nabla} \cdot \underline{u}=-L \tag{6.3}
\end{align*}
$$

- Now take \underline{u}.[equation of motion (5.1)] the "mechanical energy equation" to get

$$
\begin{equation*}
\rho \frac{d}{d t}\left(\frac{1}{2} u^{2}\right)=-\underline{u} \cdot \nabla p+\underline{u} \cdot \rho \underline{g} \tag{6.4}
\end{equation*}
$$

- Add this to (6.3) to get

$$
\begin{align*}
\rho \frac{d}{d t}\left(\frac{1}{2} u^{2}+e\right) & =-L-p \underline{\nabla} \cdot \underline{u}-\underline{u} \cdot \underline{\nabla} p+\underline{u} \cdot \rho \underline{g} \\
& =-L-\underline{\nabla} \cdot p \underline{u}+\underline{u} \cdot \rho \underline{g} \tag{6.5}
\end{align*}
$$

- Aside: for a scalar A:

$$
\begin{aligned}
\rho \frac{d A}{d t} & =\frac{d(\rho A)}{d t}-A \frac{d \rho}{d t} \\
& =\frac{d(\rho A)}{d t}+\rho A \underline{\nabla} \cdot \underline{u} \\
& =\frac{\partial(\rho A)}{\partial t}+\underline{u} \cdot \underline{\nabla}(\rho A)+\rho A \underline{\nabla} \cdot \underline{u} \\
& =\frac{\partial(\rho A)}{\partial t}+\underline{\nabla} \cdot(\rho A) \underline{u}
\end{aligned}
$$

- And so writing g in terms of the gravitational potential ψ the energy equation (6.5) becomes:

- But we can write

$$
\begin{aligned}
\underline{\nabla} \cdot(\rho \psi) \underline{u} & =(\rho \psi) \underline{\nabla} \cdot \underline{u}+\underline{u} \cdot \underline{\nabla}(\rho \psi) \\
& =(\rho \psi) \underline{\nabla} \cdot \underline{u}+\psi \underline{u} \cdot \underline{\nabla} \rho+\rho \underline{u} \cdot \underline{\nabla} \psi \\
& =\psi(\rho \underline{\nabla} \cdot \underline{u}+\underline{u} \cdot \underline{\nabla} \rho)+\rho \underline{u} \cdot \underline{\nabla} \psi \\
& =\psi\left(-\frac{\partial \rho}{\partial t}\right)+\rho \underline{u} \cdot \underline{\nabla} \psi
\end{aligned}
$$

- And so in a steady state, the energy equation becomes:

$$
\begin{equation*}
\underline{\nabla} \cdot\left(\frac{1}{2} \rho u^{2}+\rho e+p+\rho \psi\right) \underline{u}=-L \tag{6.7}
\end{equation*}
$$

- Where

$$
\rho e+p=\frac{\gamma}{\gamma-1} p \quad \text { is the enthalpy }
$$

Within some volume, the net effect (L) of the sources and sink of energy is equal (in a steady state) to the flux of energy through the surface of the volume.

6.2 Aside on equations of state

- In general, $\quad p=p(\rho, T) \quad$ and for an ideal gas

$\mathrm{n}=$ total number of particles per unit volume
- where $\rho=m n$
- For a fully-ionised H plasma

$$
n \equiv n_{p}+n_{e}=2 n_{e} \quad \rho \equiv n_{p} m_{p}+n_{e} m_{e} \approx n_{e} m_{p}
$$

Barotropic Equations of State: p(ρ)

- Means that p can be written as a function of ρ only (e.g. for an ideal gas implies that ρ and T have some additional relation). E.g.:
- Isothermal $\Rightarrow T=$ constant

$$
\text { so } \quad p \propto \rho
$$

- For this to be a good approximation, require
- Temperature for thermal equilibrium isn't very sensitive to the heating/cooling rate
- In time-dependent problems, there is time for the system to reach this constant T thermal equilibrium
- Adiabatic

$$
p=K \rho^{\gamma}
$$

- This is derived from the ideal gas laws on the assumption that there is no heat exchange with surroundings (i.e. no external heating/cooling) changes in the internal energy result purely from pdV work. (Q4: use (6.2) to prove this)
- A fluid element behaves adiabatically if K is constant as the element's properties change. An isentropic fluid is one in which all the elements have the same value of K .

Answer to Q4

Start with the energy equation:

$$
\begin{aligned}
& \rho \frac{\mathrm{d} e}{\mathrm{dt}}-\frac{p}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{dt}}=-\mathrm{L} \\
& \frac{\rho}{\gamma-1} \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{p}{\rho}\right)-\frac{p}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{dt}}=-\mathrm{L} \\
& \frac{1}{\gamma-1}\left(\frac{\mathrm{~d} p}{\mathrm{dt}}-\frac{p}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{dt}}-\frac{(\gamma-1) p}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{dt}}\right)=-\mathrm{L} \\
& \frac{1}{\gamma-1}\left(\frac{\mathrm{~d} p}{\mathrm{dt}}-\frac{\gamma p}{\rho} \frac{\mathrm{~d} \rho}{\mathrm{dt}}\right)=-\mathrm{L}
\end{aligned}
$$

$$
\frac{\rho^{\gamma}}{\gamma-1} \frac{\mathrm{~d}}{\mathrm{dt}}\left(\frac{p}{\rho^{\gamma}}\right)=-\mathrm{L}
$$

