
•! From the second law of thermodynamics:!

•! Write this equation for a small element of 

mass !m with!
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TdS =  dQ =  dU +  pdV   

6. The Energy Equation "

6.1 Derviation!

Heat change! Internal energy change!

•! Where!

•! And s is the entropy per unit mass!

•! If L is the sum of sources and sinks of energy, we 
can divide by dt to get!
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p

! "1( )#
Internal energy per unit mass!
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Ratio of specific heats!
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•! We can write this more simply using mass 

conservation:!
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(6.2)!

•! Now take u.[equation of motion (5.1)] - 

the “mechanical energy equation” to get!

•! Add this to (6.3) to get!
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•! Aside: for a scalar A:!

   !
dA

dt
=
d !A( )
dt

" A
d!

dt

           =
d !A( )
dt

+ !A# $u

           =
% !A( )
%t

+ u $# !A( ) + !A#$u

           =
% !A( )
%t

+#$ !A( )u

•! And so writing g in terms of the 

gravitational potential " the energy 

equation (6.5) becomes:!
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“#A”!



•! But we can write!
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•! And so in a steady state, the energy equation 

becomes:!

•! Where                                               is the enthalpy!
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Within some volume, the net effect (L) of the sources and 

sink of energy is equal (in a  steady state) to the flux of 

energy through the surface of the volume.!



6.2 Aside on equations of state!

•! In general,                           and for an ideal gas!

                                     or!

•! where !

•! For a fully-ionised H plasma!

p = p(!,T )

p = nkBT p =
kB

m
!T

! =mn

n ! np + ne = 2ne ! " npmp + neme # nemp

n= total number of particles per unit volume! m= mean particle mass!

Barotropic Equations of State: p(#)!

•! Means that p can be written as a function of # only 
(e.g. for an ideal gas implies that # and T have 
some additional relation). E.g.:!

•! Isothermal!

•! For this to be a good approximation, require!

–! Temperature for thermal equilibrium isn’t very 
sensitive to the heating/cooling rate!

–! In time-dependent problems, there is time for the 
system to reach this constant T thermal equilibrium!

! T = constant

so     p" #



•! Adiabatic!

•! This is derived from the ideal gas laws on the 

assumption that there is no heat exchange with 

surroundings (i.e. no external heating/cooling) - 

changes in the internal energy result purely from 

pdV work. (Q4: use (6.2) to prove this)!

•! A fluid element behaves adiabatically if K is 

constant as the element’s properties change. An 

isentropic fluid is one in which all the elements 

have the same value of K.!

   p = K!
"

Answer to Q4!

Start with the energy equation:!
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Hence if L=0, then following the 

motion, p=K#$!


