8. Example of flows:
(de) Laval Nozzle

Consider steady flow in a tube
of variable cross-section, A(z). A(2)

Mass conservation (4.1) -> —z
V- (pu)=0

o [V (pu)dV = [ pu-dS
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But there is no flow through loss rate

the sides of the tube, so this is

just puA = constant = M 8.1)

Steady momentum equation (no gravity)

(u-v)u=—1Vp=—IYpi; (82)
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But from (8.1)
Inp+Inu+InA=InM

V[f ~V(Inp) = —V(In ) - V(In A)



e And so (8.2) becomes

u-V)u=[V(Inu)+ V(In A)];Z))
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L'M)V Inu (Assume irrotational) ¢’ (see later)
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(u2 ~c’ )V(ln u)=c’V(In A)

e Or
(1 _Csz)V” _2 VA (8.3)
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* Corresponds to either
— amin or max in_u or
— U=c,



Conversely, gas can only make a
sonic transition (from sub- to super-
sonic or vice versa) at a max or min
of the nozzle.

In subsonic regime, (u?-c?)<0

— 1f A gets smaller, u gets larger \-/

— . —

In supersonic regime, (u?-c?)>0 /\

— if A gets larger, u gets larger subsonic u=c; supersonic

So a nozzle can be used to u increases
accelerate flow from subsonic -> monotonically
supersonic

e Note also from (8.2)
u'Vinu=-c>Vinp

Subsonic:  u<<c, Vinu>>Vinp

Nearly incompressible (so often a good assumption
for everyday flows); acceleration important

Supersonic:  u>>c, VInu<<Vinp

Nearly constant u; pressure gradients not important in
acceleration



Getting the velocity:

e Apply Bernoulli (7.3):

1u2 +fdp=const
2 P

e Assume isothermal

1
2u2 + ¢’ Inp = const

* At a max/min of the nozzle, A=A , and u=c

* So, 1t M, ¢, and A(z) are specified, (8.1)
gives

S

MM
CSAm

pAm = MAmA

m

e Wave Bernoulli at it...

1 2 2 1 2 2
—u +c:Inp=—c-+c’In
2 ) p 2 ) Ky pAm

u® =c[1+2In(p,, /p)]



e But, from (8.1)

pAm — MA
P A, (8.4)
* And so
u® =c’[1+2In(ul/cA,)] (8.5)

* Hence if we know A(z), get u(z) from (8.5) and
use (8.1) to get p(z).



