8. Example of flows: (de) Laval Nozzle

- Consider steady flow in a tube of variable cross-section, $\mathrm{A}(\mathrm{z})$.
- Mass conservation (4.1) ->

$$
\underline{\nabla} \cdot(\rho \underline{u})=0
$$

- or

$$
\int_{V} \bar{\nabla} \cdot(\rho \underline{u}) d V=\int_{s} \rho \underline{u} \cdot d \underline{S}
$$

- But there is no flow through the sides of the tube, so this is

Mass
loss rate

$$
\begin{equation*}
\rho u A=\text { constant }=\dot{M} \tag{8.1}
\end{equation*}
$$

- Steady momentum equation (no gravity)

$$
\begin{equation*}
(\underline{u} \cdot \underline{\nabla}) \underline{u}=-\frac{1}{\rho} \underline{\nabla} p=-\frac{1}{\rho} \nabla \rho \frac{d p}{d \rho} \tag{8.2}
\end{equation*}
$$

- But from (8.1)

$$
\ln \rho+\ln u+\ln A=\ln \dot{M}
$$

$$
\therefore \frac{\nabla \rho}{\rho}=\nabla(\ln \rho)=-\nabla(\ln u)-\nabla(\ln A)
$$

- And so (8.2) becomes

$$
\begin{aligned}
& \quad(\underline{u} \cdot \nabla) \underline{u}=[\nabla(\ln u)+\nabla(\ln A)] \frac{d p}{d \rho} \\
& \underline{u} \cdot \underline{u}) \nabla \ln u \text { (Assume irrotational) } c_{s}^{2} \text { (see later) } \\
& \text { i.e. }
\end{aligned}
$$

$$
\left(u^{2}-c_{s}^{2}\right) \nabla(\ln u)=c_{s}^{2} \nabla(\ln A)
$$

- Or

$$
\begin{equation*}
\left(u^{2}-c_{s}^{2}\right) \frac{\nabla u}{u}=c_{s}^{2} \frac{\nabla A}{A} \tag{8.3}
\end{equation*}
$$

- So.. a min
or
\max in A :

- Corresponds to either
- a min or max inu or
$-\mathrm{u}=\mathrm{c}_{\mathrm{s}}$
- Conversely, gas can only make a sonic transition (from sub- to supersonic or vice versa) at a max or min of the nozzle.
- In subsonic regime, $\left(\mathrm{u}^{2}-\mathrm{c}^{2}\right)<0$
- if A gets smaller, u gets larger
- In supersonic regime, $\left(\mathrm{u}^{2}-\mathrm{c}^{2}\right)>0$
- if A gets larger, \underline{u} gets larger subsonic $u=c_{s}$ supersonic
- So a nozzle can be used to accelerate flow from subsonic -> supersonic

$\underline{\text { u }}$ increases
monotonically
- Note also from (8.2)

$$
u^{2} \underline{\nabla} \ln u=-c_{s}^{2} \underline{\nabla} \ln \rho
$$

Subsonic: $\quad u \ll \mathrm{c}_{\mathrm{s}} \quad \underline{\nabla} \ln u \gg \underline{\nabla} \ln \rho$
Nearly incompressible (so often a good assumption for everyday flows); acceleration important

Supersonic: $\quad u \gg \mathrm{c}_{\mathrm{s}} \quad \nabla \ln u \ll \underline{\nabla} \ln \rho$
Nearly constant u; pressure gradients not important in acceleration

Getting the velocity:

- Apply Bernoulli (7.3):

$$
\frac{1}{2} u^{2}+\int \frac{d p}{\rho}=\text { const }
$$

- Assume isothermal

$$
\frac{1}{2} u^{2}+c_{s}^{2} \ln \rho=\text { const }
$$

- At a max/min of the nozzle, $\mathrm{A}=\mathrm{A}_{\mathrm{m}}$ and $\mathrm{u}=\mathrm{c}_{\mathrm{s}}$
- So, if M, c_{s} and $\mathrm{A}(\mathrm{z})$ are specified, (8.1)
gives

$$
\rho_{A m}=\frac{\dot{M}}{u_{A m} A_{m}}=\frac{\dot{M}}{c_{s} A_{m}}
$$

- Wave Bernoulli at it...

$$
\begin{gathered}
\frac{1}{2} u^{2}+c_{s}^{2} \ln \rho=\frac{1}{2} c_{s}^{2}+c_{s}^{2} \ln \rho_{A m} \\
u^{2}=c_{s}^{2}\left[1+2 \ln \left(\rho_{A m} / \rho\right)\right]
\end{gathered}
$$

- But, from (8.1)

$$
\begin{equation*}
\frac{\rho_{A m}}{\rho}=\frac{u A}{c_{s} A_{m}} \tag{8.4}
\end{equation*}
$$

- And so

$$
\begin{equation*}
u^{2}=c_{s}^{2}\left[1+2 \ln \left(u A / c_{s} A_{m}\right)\right] \tag{8.5}
\end{equation*}
$$

- Hence if we know $\mathrm{A}(\mathrm{z})$, get $\mathrm{u}(\mathrm{z})$ from (8.5) and use (8.1) to get $\rho(\mathrm{z})$.

