13. Water waves

- Why do waves break when they reach the shore?

- How can you tell if a storm is coming?

13. 1 How do water waves propagate?

Assume:

1. Incompressible, irrotational flow =>

Laplace's equation

$$
\begin{align*}
& \underline{\nabla} \times \underline{u}=0, \quad \underline{u}=\underline{\nabla} \Phi \\
& \underline{\nabla} \cdot \underline{u}=0, \quad \Rightarrow \quad \underline{\nabla}^{2} \Phi=0 \tag{13.1}
\end{align*}
$$

2. Atmospheric (uniform) pressure at the water surface $\left(=>p=p_{0}\right.$ and ρ constant too)

Surface boundary condition:

- Match pressures at the surface using Bernoulli's equation (7.2) for time-dependent but ideal (zero vorticity) flow:

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=-\nabla\left(\frac{1}{2} u^{2}+\frac{p}{\rho}+\psi\right) \\
& \nabla\left(\frac{\partial \Phi}{\partial t}+\frac{1}{2} u^{2}+\frac{p}{\rho}+\psi\right)=0
\end{aligned}
$$

- Hence at the water surface $(\mathrm{z}=\mathrm{H}(\mathrm{x}, \mathrm{t}))$

- So

$$
\begin{equation*}
H(x, t)=\frac{\partial \Phi / \partial t}{-g} \tag{13.2}
\end{equation*}
$$

- Also, a parcel of fluid near the surface moves up and down with the surface

$$
u_{z}=\frac{\partial \Phi}{\partial z}=\frac{\partial H}{\partial t}
$$

- So differentiating (13.2) =>

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial t^{2}}+g \frac{\partial \Phi}{\partial z}=0 \tag{13.3}
\end{equation*}
$$

Method:

- Look for separable solutions of Laplace's equation (13.1):

$$
\Phi=f(z) \phi(x) q(t)
$$

- So

$$
\begin{aligned}
\nabla^{2} \Phi=0 & \Rightarrow \phi_{x x} f+\phi f_{z z}=0 \\
\frac{f_{z z}}{f} & =-\frac{\phi_{x x}}{\phi}=k^{2}
\end{aligned}
$$

Positive to get $\mathrm{f}->0$ below surface

- Choose

$$
\begin{aligned}
& q(t)=e^{-i \omega t} \\
& \phi(x)=e^{i k x}
\end{aligned}
$$

- i.e.

$$
\begin{aligned}
& \Phi=f(z) e^{i(k-\omega t)} \\
& f=A e^{k z}+B e^{-k z}
\end{aligned}
$$

- Choice for $\mathrm{f}(\mathrm{z})$ depends on whether deep or shallow water

13.2 Deep water waves

- Choose $\mathrm{B}=0$ so that

$$
\begin{gather*}
f \rightarrow 0 \text { as } z \rightarrow-\infty \\
\Phi=C e^{k z} e^{i(k x-\omega t)} \tag{13.4}
\end{gather*}
$$

- Note that wave penetrates only to about $\mathrm{z}=-\lambda$ since here

$$
e^{k z}=e^{z 2 \pi / \lambda}=e^{-2 \pi} \approx 10^{-3}
$$

- Boundary condition (13.3) now gives

$$
-\omega^{2}+g k=0
$$

- So

$$
\omega=\sqrt{g k}
$$

- And the wave speed

$$
c=\frac{\omega}{k}=\sqrt{\frac{g}{k}}=\sqrt{\frac{g \lambda}{2 \pi}}
$$

- Waves are dispersive (long λ i.e. small k travel faster)
- First sign of Atlantic storm is long waves of small amplitude (swell) period $\sim 30 \mathrm{~s}$, speed $\sim 47 \mathrm{~ms}^{-1}$, travelling $\sim 4000 \mathrm{~km}$ in a day.
- Hence arrive before storm (takes several days to cross Atlantic)
- Followed by shorter waves that travel more slowly

13.3 Shallow water waves

- Still have

$$
\begin{aligned}
& \Phi=f(z) e^{i(k x-\omega t)} \\
& f=A e^{k z}+B e^{-k z}
\end{aligned}
$$

- But choose

$$
f=C \cosh [k(z+h)]
$$

- So that $\mathrm{u}_{\mathrm{z}} \sim \mathrm{f}^{\prime}->0$ at $\mathrm{z}=-\mathrm{h}$
- So

$$
\begin{equation*}
\Phi=C \cosh [k(z+h)] e^{i(k x-\omega t)} \tag{13.5}
\end{equation*}
$$

- (13.3) now gives (at $\mathrm{z}=0$)

$$
(i \omega)^{2} \cosh (k h)+g k \sinh (k h)=0
$$

- So

$$
\omega=\sqrt{g k \tanh (k h)}
$$

- And the wave speed

$$
c=\frac{\omega}{k}=\sqrt{\frac{g}{k} \tanh (k h)}
$$

- Limits:

Deep water $\quad h \rightarrow \infty, \quad c \rightarrow \sqrt{\frac{g}{k}} \quad$ (as before)
Shallow water $k h \rightarrow 0, \quad c \rightarrow \sqrt{g h} \quad$ (indep. of k)

As h decreases, so does wave speed c

- Hence as waves approach shore:

- The back of the wave has a larger $\mathrm{h}->$ larger speed so it catches up on the front of the wave.
- Wave steepens and breaks -> Surf!

13.4 Particle paths: deep water

- Write the particle position (x, z) as a displacement ($\mathrm{X}(\mathrm{t}), \mathrm{Z}(\mathrm{t})$) from a mean position $\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right)$.

$$
\begin{aligned}
& x=x_{0}+X(t) \\
& z=z_{0}+Z(t)
\end{aligned}
$$

- Now from (13.4)

$$
\Phi=C e^{k z} e^{i(k x-\omega t)}
$$

- So taking real parts

$$
\begin{aligned}
& X^{\prime}(t)=u_{x}\left(x_{0}, z_{0}\right)=\frac{\partial \Phi}{\partial x}=-k C e^{k z_{0}} \sin \left(k x_{0}-\omega t\right) \\
& Z^{\prime}(t)=u_{z}\left(x_{0}, z_{0}\right)=\frac{\partial \Phi}{\partial z}=k C e^{k z_{0}} \cos \left(k x_{0}-\omega t\right)
\end{aligned}
$$

- Integrating gives

$$
\begin{aligned}
& X(t)=-\frac{k C}{\omega} e^{k z_{0}} \cos \left(k x_{0}-\omega t\right) \\
& Z(t)=-\frac{k C}{\omega} e^{k z_{0}} \sin \left(k x_{0}-\omega t\right)
\end{aligned}
$$

- The particle paths are therefore circles, whose radius

$$
R=\frac{k C}{\omega} e^{k z}
$$

is the wave amplitude at $\mathrm{z}=0$ and decreases with z .

13.5 Particle paths: shallow water

- Once again

$$
\begin{aligned}
& x=x_{0}+X(t) \\
& z=z_{0}+Z(t)
\end{aligned}
$$

- And with (13.5)

$$
\Phi=C \cosh [k(z+h)] e^{i(k x-\omega t)}
$$

- Obtain

$$
\begin{aligned}
& X(t)=\frac{-k C}{\omega} \cosh \left[k\left(z_{0}+h\right)\right] \cos \left(k x_{0}-\omega t\right) \\
& Z(t)=\frac{-k C}{\omega} \sinh \left[k\left(z_{0}+h\right)\right] \sin \left(k x_{0}-\omega t\right)
\end{aligned}
$$

- Ellipses

$$
\left\{\frac{x-x_{0}}{\cosh \left[k\left(z_{0}+h\right)\right]}\right\}^{2}+\left\{\frac{z-z_{0}}{\sinh \left[k\left(z_{0}+h\right)\right]}\right\}^{2}=\left(\frac{k C}{\omega}\right)^{2}
$$

- h very large $=>$ circular motion
- h very small $=>$ almost horizontal motion

