Introduction to Scientific Computing in Python

Robert Johansson

August 27, 2014

3 Numpy - multidimensional data arrays

3.1 Introduction
3.2 Creating numpy arrays
3.2.1 From lists
3.2.2 Using array-generating functions
3.3 File I/O
3.3.1 Comma-separated values (CSV)
3.3.2 Numpy’s native file format
3.4 More properties of the numpy arrays
3.5 Manipulating arrays
3.5.1 Indexing
3.5.2 Index slicing
3.5.3 Fancy indexing
3.6 Functions for extracting data from arrays and creating arrays
3.6.1 where
3.6.2 diag
3.6.3 take
3.6.4 choose
3.7 Linear algebra
3.7.1 Scalar-array operations
3.7.2 Element-wise array-array operations
3.7.3 Matrix algebra
3.7.4 Array/Matrix transformations
3.7.5 Matrix computations
3.7.6 Data processing
3.7.7 Computations on subsets of arrays
3.7.8 Calculations with higher-dimensional data
3.8 Reshaping, resizing and stacking arrays
3.9 Adding a new dimension: newaxis
3.10 Stacking and repeating arrays
3.10.1 tile and repeat
3.10.2 concatenate
3.10.3 hstack and vstack
3.11 Copy and “deep copy”
3.12 Iterating over array elements
3.13 Vectorizing functions
3.14 Using arrays in conditions
3.15 Type casting
3.16 Further reading
3.17 Versions
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>There are two main purposes of RCS systems:</td>
<td>173</td>
</tr>
<tr>
<td>9.2</td>
<td>Basic principles and terminology for RCS systems</td>
<td>173</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Some good RCS software</td>
<td>174</td>
</tr>
<tr>
<td>9.3</td>
<td>Installing git</td>
<td>174</td>
</tr>
<tr>
<td>9.4</td>
<td>Creating and cloning a repository</td>
<td>174</td>
</tr>
<tr>
<td>9.5</td>
<td>Status</td>
<td>175</td>
</tr>
<tr>
<td>9.6</td>
<td>Adding files and committing changes</td>
<td>175</td>
</tr>
<tr>
<td>9.7</td>
<td>Committing changes</td>
<td>176</td>
</tr>
<tr>
<td>9.8</td>
<td>Removing files</td>
<td>177</td>
</tr>
<tr>
<td>9.9</td>
<td>Commit logs</td>
<td>178</td>
</tr>
<tr>
<td>9.10</td>
<td>Diffs</td>
<td>178</td>
</tr>
<tr>
<td>9.11</td>
<td>Discard changes in the working directory</td>
<td>179</td>
</tr>
<tr>
<td>9.12</td>
<td>Checking out old revisions</td>
<td>180</td>
</tr>
<tr>
<td>9.13</td>
<td>Tagging and branching</td>
<td>181</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Tags</td>
<td>181</td>
</tr>
<tr>
<td>9.14</td>
<td>Branches</td>
<td>182</td>
</tr>
<tr>
<td>9.15</td>
<td>pulling and pushing changsets between repositories</td>
<td>184</td>
</tr>
<tr>
<td>9.15.1</td>
<td>pull</td>
<td>184</td>
</tr>
<tr>
<td>9.15.2</td>
<td>push</td>
<td>185</td>
</tr>
<tr>
<td>9.16</td>
<td>Hosted repositories</td>
<td>185</td>
</tr>
<tr>
<td>9.17</td>
<td>Graphical user interfaces</td>
<td>186</td>
</tr>
<tr>
<td>9.18</td>
<td>Further reading</td>
<td>187</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction to scientific computing with Python

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

1.1 The role of computing in science

Science has traditionally been divided into experimental and theoretical disciplines, but during the last several decades computing has emerged as a very important part of science. Scientific computing is often closely related to theory, but it also has many characteristics in common with experimental work. It is therefore often viewed as a new third branch of science. In most fields of science, computational work is an important complement to both experiments and theory, and nowadays a vast majority of both experimental and theoretical papers involve some numerical calculations, simulations or computer modeling.

In experimental and theoretical sciences there are well established codes of conducts for how results and methods are published and made available to other scientists. For example, in theoretical sciences, derivations, proofs and other results are published in full detail, or made available upon request. Likewise, in experimental sciences, the methods used and the results are published, and all experimental data should be available upon request. It is considered unscientific to withhold crucial details in a theoretical proof or experimental method, that would hinder other scientists from replicating and reproducing the results.

In computational sciences there are not yet any well established guidelines for how source code and generated data should be handled. For example, it is relatively rare that source code used in simulations for published papers are provided to readers, in contrast to the open nature of experimental and theoretical work. And it is not uncommon that source code for simulation software is withheld and considered a competitive advantage (or unnecessary to publish).

However, this issue has recently started to attract increasing attention, and a number of editorials in high-profile journals have called for increased openness in computational sciences. Some prestigious journals, including Science, have even started to demand of authors to provide the source code for simulation software used in publications to readers upon request.

Discussions are also ongoing on how to facilitate distribution of scientific software, for example as supplementary materials to scientific papers.

1.1.1 References

1.2 Requirements on scientific computing

Replication and reproducibility are two of the cornerstones in the scientific method. With respect to numerical work, complying with these concepts have the following practical implications:

- Replication: An author of a scientific paper that involves numerical calculations should be able to rerun the simulations and replicate the results upon request. Other scientist should also be able to perform the same calculations and obtain the same results, given the information about the methods used in a publication.

- Reproducibility: The results obtained from numerical simulations should be reproducible with an independent implementation of the method, or using a different method altogether.

In summary: A sound scientific result should be reproducible, and a sound scientific study should be replicable.

To achieve these goals, we need to:

- Keep and take note of exactly which source code and version that was used to produce data and figures in published papers.

- Record information of which version of external software that was used. Keep access to the environment that was used.

- Make sure that old codes and notes are backed up and kept for future reference.

- Be ready to give additional information about the methods used, and perhaps also the simulation codes, to an interested reader who requests it (even years after the paper was published!).

- Ideally codes should be published online, to make it easier for other scientists interested in the codes to access it.

1.2.1 Tools for managing source code

Ensuring replicability and reproducibility of scientific simulations is a complicated problem, but there are good tools to help with this:

- Revision Control System (RCS) software.
 - Good choices include:
 * git - http://git-scm.com
 * subversion - http://subversion.apache.org. Also known as svn.

- Online repositories for source code. Available as both private and public repositories.
 - Some good alternatives are
 * Github - http://www.github.com
 * Bitbucket - http://www.bitbucket.com
 * Privately hosted repositories on the university’s or department’s servers.

Note: Repositories are also excellent for version controlling manuscripts, figures, thesis files, data files, lab logs, etc. Basically for any digital content that must be preserved and is frequently updated. Again, both public and private repositories are readily available. They are also excellent collaboration tools!
1.3 What is Python?

Python is a modern, general-purpose, object-oriented, high-level programming language.

General characteristics of Python:

- **clean and simple language**: Easy-to-read and intuitive code, easy-to-learn minimalistic syntax, maintainability scales well with size of projects.
- **expressive language**: Fewer lines of code, fewer bugs, easier to maintain.

Technical details:

- **dynamically typed**: No need to define the type of variables, function arguments or return types.
- **automatic memory management**: No need to explicitly allocate and deallocate memory for variables and data arrays. No memory leak bugs.
- **interpreted**: No need to compile the code. The Python interpreter reads and executes the python code directly.

Advantages:

- The main advantage is ease of programming, minimizing the time required to develop, debug and maintain the code.
- Well designed language that encourage many good programming practices:
 - Modular and object-oriented programming, good system for packaging and re-use of code. This often results in more transparent, maintainable and bug-free code.
 - Documentation tightly integrated with the code.
 - A large standard library, and a large collection of add-on packages.

Disadvantages:

- Since Python is an interpreted and dynamically typed programming language, the execution of python code can be slow compared to compiled statically typed programming languages, such as C and Fortran.
- Somewhat decentralized, with different environment, packages and documentation spread out at different places. Can make it harder to get started.

1.4 What makes python suitable for scientific computing?

- Python has a strong position in scientific computing:
 - Large community of users, easy to find help and documentation.

- Extensive ecosystem of scientific libraries and environments
 - numpy: http://numpy.scipy.org - Numerical Python
 - scipy: http://www.scipy.org - Scientific Python
 - matplotlib: http://www.matplotlib.org - graphics library

- Great performance due to close integration with time-tested and highly optimized codes written in C and Fortran:
 - blas, altas blas, lapack, arpack, Intel MKL, . . .

- Good support for
 - Parallel processing with processes and threads
 - Interprocess communication (MPI)
 - GPU computing (OpenCL and CUDA)

- Readily available and suitable for use on high-performance computing clusters.
- No license costs, no unnecessary use of research budget.
1.4.1 The scientific python software stack

1.4.2 Python environments

Python is not only a programming language, but often also refers to the standard implementation of the
interpreter (technically referred to as CPython) that actually runs the python code on a computer.

There are also many different environments through which the python interpreter can be used. Each
environment have different advantages and is suitable for different workflows. One strength of python is that
it versatile and can be used in complementary ways, but it can be confusing for beginners so we will start
with a brief survey of python environments that are useful for scientific computing.

1.4.3 Python interpreter

The standard way to use the Python programming language is to use the Python interpreter to run python
code. The python interpreter is a program that read and execute the python code in files passed to it as
arguments. At the command prompt, the command python is used to invoke the Python interpreter.

For example, to run a file my-program.py that contains python code from the command prompt, use::

$ python my-program.py

We can also start the interpreter by simply typing python at the command line, and interactively type
python code into the interpreter.

This is often how we want to work when developing scientific applications, or when doing small calculations. But the standard python interpreter is not very convenient for this kind of work, due to a number of
limitations.

1.4.4 IPython

IPython is an interactive shell that addresses the limitation of the standard python interpreter, and it is a
work-horse for scientific use of python. It provides an interactive prompt to the python interpreter with a
greatly improved user-friendliness.

Some of the many useful features of IPython includes:

- Command history, which can be browsed with the up and down arrows on the keyboard.
- Tab auto-completion.
- In-line editing of code.
- Object introspection, and automatic extract of documentation strings from python objects like classes
 and functions.
- Good interaction with operating system shell.
- Support for multiple parallel back-end processes, that can run on computing clusters or cloud services
 like Amazon EE2.

1.4.5 IPython notebook

IPython notebook is an HTML-based notebook environment for Python, similar to Mathematica or Maple. It
is based on the IPython shell, but provides a cell-based environment with great interactivity, where
calculations can be organized documented in a structured way.

Although using the a web browser as graphical interface, IPython notebooks are usually run locally,
from the same computer that run the browser. To start a new IPython notebook session, run the following
command:

$ ipython notebook

from a directory where you want the notebooks to be stored. This will open a new browser window (or
a new tab in an existing window) with an index page where existing notebooks are shown and from which
new notebooks can be created.
1.4.6 Spyder

Spyder is a MATLAB-like IDE for scientific computing with python. It has the many advantages of a traditional IDE environment, for example that everything from code editing, execution and debugging is carried out in a single environment, and work on different calculations can be organized as projects in the IDE environment.

Some advantages of Spyder:

- Powerful code editor, with syntax high-lighting, dynamic code introspection and integration with the python debugger.
- Variable explorer, IPython command prompt.
- Integrated documentation and help.

1.5 Versions of Python

There are currently two versions of python: Python 2 and Python 3. Python 3 will eventually supercede Python 2, but it is not backward-compatible with Python 2. A lot of existing python code and packages has been written for Python 2, and it is still the most wide-spread version. For these lectures either version will be fine, but it is probably easier to stick with Python 2 for now, because it is more readily available via prebuilt packages and binary installers.

To see which version of Python you have, run

```bash
$ python --version
Python 2.7.3
$ python3.2 --version
Python 3.2.3
```

Several versions of Python can be installed in parallel, as shown above.

1.6 Installation

1.6.1 Linux

In Ubuntu Linux, to installing python and all the requirements run:

```bash
$ sudo apt-get install python ipython ipython-notebook
$ sudo apt-get install python-numpy python-scipy python-matplotlib python-sympy
$ sudo apt-get install spyder
```

1.6.2 MacOS X

Macports

Python is included by default in Mac OS X, but for our purposes it will be useful to install a new python environment using Macports, because it makes it much easier to install all the required additional packages. Using Macports, we can install what we need with:

```bash
$ sudo port install py27-ipython +pyside+notebook+parallel+scientific
$ sudo port install py27-scipy py27-matplotlib py27-sympy
$ sudo port install py27-spyder
```

These will associate the commands python and ipython with the versions installed via macports (instead of the one that is shipped with Mac OS X), run the following commands:

```bash
$ sudo port select python python27
$ sudo port select ipython ipython27
```
Fink

Or, alternatively, you can use the Fink package manager. After installing Fink, use the following command to install python and the packages that we need:

$ sudo fink install python27 ipython-py27 numpy-py27 matplotlib-py27 scipy-py27 sympy-py27
$ sudo fink install spyder-mac-py27

1.6.3 Windows

Windows lacks a good packaging system, so the easiest way to setup a Python environment is to install a pre-packaged distribution. Some good alternatives are:

- **Enthought Python Distribution.** EPD is a commercial product but is available free for academic use.
- **Anaconda CE.** Anaconda Pro is a commercial product, but Anaconda Community Edition is free.
- **Python(x,y).** Fully open source.

Note EPD and Anaconda CE are also available for Linux and Max OS X.

1.7 Further reading

- **Python.** The official Python web site.
- **Python tutorials.** The official Python tutorials.
- **Think Python.** A free book on Python.

1.8 Python and module versions

Since there are several different versions of Python and each Python package has its own release cycle and version number (for example scipy, numpy, matplotlib, etc., which we installed above and will discuss in detail in the following lectures), it is important for the reproducibility of an IPython notebook to record the versions of all these different software packages. If this is done properly it will be easy to reproduce the environment that was used to run a notebook, but if not it can be hard to know what was used to produce the results in a notebook.

To encourage the practice of recording Python and module versions in notebooks, I’ve created a simple IPython extension that produces a table with versions numbers of selected software components. I believe that it is a good practice to include this kind of table in every notebook you create.

To install this IPython extension, run:

```
In[1]: # you only need to do this once
%install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py
```

Installed version_information.py. To use it, type:

```
%load_ext version_information
```

Now, to load the extension and produce the version table

```
In[2]: %load_ext version_information

%version_information numpy, scipy, matplotlib, sym
```
<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>2.7.5 (default, May 19 2013, 13:26:46) (GCC 4.2.1 Compatible Apple Clang 4.1 ((tags/Apple/clang-421.11.66))</td>
</tr>
<tr>
<td>IPython</td>
<td>0.13.2</td>
</tr>
<tr>
<td>OS</td>
<td>posix [darwin]</td>
</tr>
<tr>
<td>numpy</td>
<td>1.7.1</td>
</tr>
<tr>
<td>scipy</td>
<td>0.12.0</td>
</tr>
<tr>
<td>matplotlib</td>
<td>1.2.1</td>
</tr>
<tr>
<td>sympy</td>
<td>0.7.2</td>
</tr>
</tbody>
</table>

Thu Aug 08 11:18:41 2013 JST
Chapter 2

Introduction to Python programming

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

2.1 Python program files

• Python code is usually stored in text files with the file ending “.py”:

 myprogram.py

• Every line in a Python program file is assumed to be a Python statement, or part thereof.

 – The only exception is comment lines, which start with the character # (optionally preceded by an arbitrary number of white-space characters, i.e., tabs or spaces). Comment lines are usually ignored by the Python interpreter.

• To run our Python program from the command line we use:

 $ python myprogram.py

• On UNIX systems it is common to define the path to the interpreter on the first line of the program (note that this is a comment line as far as the Python interpreter is concerned):

 #!/usr/bin/env python

If we do, and if we additionally set the file script to be executable, we can run the program like this:

 $ myprogram.py

2.1.1 Example:

In[1]: ls scripts/hello-world*.py

 scripts/hello-world-in-swedish.py scripts/hello-world.py
2.1.2 Character encoding

The standard character encoding is ASCII, but we can use any other encoding, for example UTF-8. To specify that UTF-8 is used we include the special line

```python
# -*- coding: UTF-8 -*-
```

at the top of the file.

```
In[4]: cat scripts/hello-world-in-swedish.py

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
print("Hej världen!")
```

```
In[5]: !python scripts/hello-world-in-swedish.py

Hej världen!
```

Other than these two optional lines in the beginning of a Python code file, no additional code is required for initializing a program.

2.2 IPython notebooks

This file - an IPython notebook - does not follow the standard pattern with Python code in a text file. Instead, an IPython notebook is stored as a file in the JSON format. The advantage is that we can mix formatted text, Python code and code output. It requires the IPython notebook server to run it though, and therefore isn’t a stand-alone Python program as described above. Other than that, there is no difference between the Python code that goes into a program file or an IPython notebook.

2.3 Modules

Most of the functionality in Python is provided by modules. The Python Standard Library is a large collection of modules that provides cross-platform implementations of common facilities such as access to the operating system, file I/O, string management, network communication, and much more.

2.3.1 References

- The Python Standard Library: http://docs.python.org/2/library/

To use a module in a Python program it first has to be imported. A module can be imported using the `import` statement. For example, to import the module `math`, which contains many standard mathematical functions, we can do:
This includes the whole module and makes it available for use later in the program. For example, we can do:

```
In[3]: import math
x = math.cos(2 * math.pi)
print(x)
```

1.0

Alternatively, we can chose to import all symbols (functions and variables) in a module to the current namespace (so that we don’t need to use the prefix “math.” every time we use something from the math module:

```
In[8]: from math import *
x = cos(2 * pi)
print(x)
```

1.0

This pattern can be very convenient, but in large programs that include many modules it is often a good idea to keep the symbols from each module in their own namespaces, by using the import math pattern. This would eliminate potentially confusing problems with name space collisions.

As a third alternative, we can chose to import only a few selected symbols from a module by explicitly listing which ones we want to import instead of using the wildcard character *:

```
In[9]: from math import cos, pi
x = cos(2 * pi)
print(x)
```

1.0

2.3.2 Looking at what a module contains, and its documentation

Once a module is imported, we can list the symbols it provides using the `dir` function:

```
In[10]: import math
print(dir(math))
```

```
```

And using the function `help` we can get a description of each function (almost .. not all functions have docstrings, as they are technically called, but the vast majority of functions are documented this way).

```
In[11]: help(math.log)
```
Help on built-in function log in module math:

```
log(...)
log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.
```

```
In[12]: log(10)
Out[12]: 2.302585092994046

In[13]: log(10, 2)
Out[13]: 3.3219280948873626
```

We can also use the help function directly on modules: Try `help(math)`

Some very useful modules form the Python standard library are `os`, `sys`, `math`, `shutil`, `re`, `subprocess`, `multiprocessing`, `threading`.

A complete lists of standard modules for Python 2 and Python 3 are available at http://docs.python.org/2/library/ and http://docs.python.org/3/library/, respectively.

2.4 Variables and types

2.4.1 Symbol names

Variable names in Python can contain alphanumerical characters `a-z`, `A-Z`, `0-9` and some special characters such as `.` Normal variable names must start with a letter.

By convention, variable names start with a lower-case letter, and Class names start with a capital letter.

In addition, there are a number of Python keywords that cannot be used as variable names. These keywords are:

```
and, as, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, with, yield
```

Note: Be aware of the keyword `lambda`, which could easily be a natural variable name in a scientific program. But being a keyword, it cannot be used as a variable name.

2.4.2 Assignment

The assignment operator in Python is `=`. Python is a dynamically typed language, so we do not need to specify the type of a variable when we create one.

Assigning a value to a new variable creates the variable:

```
In[14]: # variable assignments
x = 1.0
my_variable = 12.2
```

Although not explicitly specified, a variable do have a type associated with it. The type is derived form the value it was assigned.
If we assign a new value to a variable, its type can change.

In[16]: x = 1

In[17]: type(x)

Out[17]: builtins.int

If we try to use a variable that has not yet been defined we get an NameError:

In[18]: print(y)

NameError Traceback (most recent call last)
<ipython-input-18-36b2093251cd> in <module>()
----> 1 print(y)

NameError: name 'y' is not defined

2.4.3 Fundamental types

In[19]: # integers
 x = 1
 type(x)

Out[19]: builtins.int

In[20]: # float
 x = 1.0
 type(x)

Out[20]: builtins.float

In[21]: # boolean
 b1 = True
 b2 = False
 type(b1)

Out[21]: builtins.bool

In[22]: # complex numbers: note the use of 'j' to specify the imaginary part
 x = 1.0 - 1.0j
 type(x)
2.4.4 Type utility functions

The module `types` contains a number of type name definitions that can be used to test if variables are of certain types:

```python
In[25]: import types

# print all types defined in the 'types' module
print(dir(types))

['BuiltinFunctionType', 'BuiltinMethodType', 'CodeType', 'FrameType', 'FunctionType', 'GeneratorType', ...
 'builtins', 'cached', 'doc', 'file', 'initializing', 'loader', 'name', 'package', 'calculate meta', 'new
class', 'prepare class']
```

```python
In[26]: x = 1.0

# check if the variable x is a float
type(x) is float
```

Out[26]: True

```python
In[27]: # check if the variable x is an int
type(x) is int
```

Out[27]: False

We can also use the `isinstance` method for testing types of variables:

```python
In[28]: isinstance(x, float)
```

Out[28]: True

2.4.5 Type casting

```python
In[29]: x = 1.5

print(x, type(x))
```

1.5 <class 'float'>
In[30]:
x = int(x)

print(x, type(x))

1 <class 'int'>

In[31]:
z = complex(x)

print(z, type(z))

(1+0j) <class 'complex'>

In[32]:
x = float(z)

TypeError Traceback (most recent call last)
<ipython-input-32-e719cc7b3e96> in <module>()
----> 1 x = float(z)

TypeError: can't convert complex to float

Complex variables cannot be cast to floats or integers. We need to use \texttt{z.real} or \texttt{z.imag} to extract the part of the complex number we want:

In[33]:
y = bool(z.real)

print(z.real, " -> ", y, type(y))
y = bool(z.imag)

print(z.imag, " -> ", y, type(y))

1.0 -> True <class 'bool'>
0.0 -> False <class 'bool'>

2.5 Operators and comparisons

Most operators and comparisons in Python work as one would expect:

- Arithmetic operators $+$, $-$, \ast, $/$, $//$ (integer division), $\ast\ast$ power

In[34]:

1 + 2, 1 - 2, 1 * 2, 1 / 2

Out[34]: (3, -1, 2, 0.5)

In[35]:

1.0 + 2.0, 1.0 - 2.0, 1.0 * 2.0, 1.0 / 2.0

Out[35]: (3.0, -1.0, 2.0, 0.5)
In[36]: # Integer division of float numbers
3.0 // 2.0

Out[36]: 1.0

In[37]: # Note! The power operators in python isn't ^, but **
2 ** 2

Out[37]: 4

- The boolean operators are spelled out as words **and**, **not**, **or**.

In[38]: True and False

Out[38]: False

In[39]: not False

Out[39]: True

In[40]: True or False

Out[40]: True

- Comparison operators **>, <, >=** (greater or equal), **<=** (less or equal), **==** equality, **is** identical.

In[41]: 2 > 1, 2 < 1

Out[41]: (True, False)

In[42]: 2 > 2, 2 < 2

Out[42]: (False, False)

In[43]: 2 >= 2, 2 <= 2

Out[43]: (True, True)

In[44]: # equality
[1,2] == [1,2]

Out[44]: True
In[45]: # objects identical?
11 = 12 = [1,2]
11 is 12

Out[45]: True

2.6 Compound types: Strings, List and dictionaries

2.6.1 Strings

Strings are the variable type that is used for storing text messages.

In[46]:

s = "Hello world"
type(s)

Out[46]: builtins.str

In[47]:

length of the string: the number of characters
len(s)

Out[47]: 11

In[48]:

replace a substring in a string with something else
s2 = s.replace("world", "test")
print(s2)

Hello test

We can index a character in a string using []:

In[49]:

s[0]

Out[49]: 'H'

Heads up MATLAB users: Indexing start at 0!

We can extract a part of a string using the syntax [start:stop], which extracts characters between index start and stop:

In[50]:

s[0:5]

Out[50]: 'Hello'

If we omit either (or both) of start or stop from [start:stop], the default is the beginning and the end of the string, respectively:

In[51]:

s[:5]

Out[51]: 'Hello'
In[52]: s[6:]
Out[52]: 'world'

In[53]: s[:]
Out[53]: 'Hello world'

We can also define the step size using the syntax `[start:end:step]` (the default value for `step` is 1, as we saw above):

In[54]: s[::1]
Out[54]: 'Hello world'

In[55]: s[::2]
Out[55]: 'Hlowrd'

This technique is called *slicing*. Read more about the syntax here: http://docs.python.org/release/2.7.3/library/functions.html?highlight=slice#slice

Python has a very rich set of functions for text processing. See for example http://docs.python.org/2/library/string.html for more information.

String formatting examples

In[56]: print("str1", "str2", "str3") # The print statement concatenates strings with a space

 str1 str2 str3

In[57]: print("str1", 1.0, False, -1j) # The print statements converts all arguments to strings

 str1 1.0 False (-0-1j)

In[58]: print("str1" + "str2" + "str3") # strings added with + are concatenated without space

 str1str2str3

In[59]: print("value = \%.2f\" % 1.0) # we can use C-style string formatting

 value = 1.000000

In[60]: # this formatting creates a string
 s2 = "value1 = %.2f. value2 = %d" % (3.1415, 1.5)
 print(s2)

 value1 = 3.14. value2 = 1
```python
In[61]: # alternative, more intuitive way of formatting a string
    s3 = 'value1 = {0}, value2 = {1}'.format(3.1415, 1.5)
    print(s3)

value1 = 3.1415, value2 = 1.5
```

2.6.2 List

Lists are very similar to strings, except that each element can be of any type.

The syntax for creating lists in Python is
```
[...
```

```python
In[62]: l = [1, 2, 3, 4]
    print(type(l))
    print(l)

<class 'list'>
[1, 2, 3, 4]
```

We can use the same slicing techniques to manipulate lists as we could use on strings:

```python
In[63]: print(l)
    print(l[1:3])
    print(l[::2])

[1, 2, 3, 4]
[2, 3]
[1, 3]
```

Heads up MATLAB users: Indexing starts at 0!

```python
In[64]: l[0]

Out[64]: 1
```

Elements in a list do not all have to be of the same type:

```python
In[65]: l = [1, 'a', 1.0, 1-1j]
    print(l)

[1, 'a', 1.0, (1-1j)]
```

Python lists can be inhomogeneous and arbitrarily nested:

```python
In[66]: nested_list = [1, [2, [3, [4, [5]]]]]
    nested_list

Out[66]: [1, [2, [3, [4, [5]]]]]
```

Lists play a very important role in Python, and are for example used in loops and other flow control structures (discussed below). There are number of convenient functions for generating lists of various types, for example the `range` function:

```python
```
```python
In[67]:
start = 10
stop = 30
step = 2
range(start, stop, step)

Out[67]: range(10, 30, 2)

In[68]:
# in python 3 range generates an interator, which can be converted to a list using 'list(...)'.
# It has no effect in python 2
list(range(start, stop, step))

Out[68]: [10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

In[69]:
list(range(-10, 10))

Out[69]: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In[70]:
s
Out[70]: 'Hello world'

In[71]:
# convert a string to a list by type casting:
s2 = list(s)
s2

Out[71]: ['H', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd']

In[72]:
# sorting lists
s2.sort()
print(s2)

[' ', 'H', 'd', 'e', 'l', 'l', 'l', 'o', 'o', 'r', 'w']

Adding, inserting, modifying, and removing elements from lists

In[73]:
# create a new empty list
l = []

# add an elements using 'append'
l.append("A")
l.append("d")
l.append("d")

print(l)

['A', 'd', 'd']
```

We can modify lists by assigning new values to elements in the list. In technical jargon, lists are *mutable*.

24
In[74]:
```python
l[1] = "p"
l[2] = "p"
print(l)
['A', 'p', 'p']
```

In[75]:
```python
l[1:3] = ["d", "d"]
print(l)
['A', 'd', 'd']
```

Insert an element at a specific index using `insert`

In[76]:
```python
l.insert(0, "i")
l.insert(1, "n")
l.insert(2, "s")
l.insert(3, "e")
l.insert(4, "r")
l.insert(5, "t")
print(l)
['i', 'n', 's', 'e', 'r', 't', 'A', 'd', 'd']
```

Remove first element with specific value using `remove`

In[77]:
```python
l.remove("A")
print(l)
['i', 'n', 's', 'e', 'r', 't', 'd', 'd']
```

Remove an element at a specific location using `del`:

In[78]:
```python
del l[7]
del l[6]
print(l)
['i', 'n', 's', 'e', 'r', 't']
```

See `help(list)` for more details, or read the online documentation

2.6.3 Tuples

Tuples are like lists, except that they cannot be modified once created, that is they are **immutable**.

In Python, tuples are created using the syntax `(..., ..., ...)`, or even `..., ...`:

In[79]:
```python
point = (10, 20)
print(point, type(point))
(10, 20) <class 'tuple'>
```
We can unpack a tuple by assigning it to a comma-separated list of variables:

```
In[81]:
x, y = point
print("x =", x)
print("y =", y)
```

```
x = 10
y = 20
```

If we try to assign a new value to an element in a tuple we get an error:

```
In[82]:
point[0] = 20
```

```
---------------------------------------------------------------------------
TypeError                                Traceback (most recent call last)
<ipython-input-82-ac1c641a5dca> in <module>()
----> 1 point[0] = 20
TypeError: 'tuple' object does not support item assignment
```

2.6.4 Dictionaries

Dictionaries are also like lists, except that each element is a key-value pair. The syntax for dictionaries is
```
{key1 : value1, ...
```

```
In[83]:
params = {"parameter1" : 1.0,
           "parameter2" : 2.0,
           "parameter3" : 3.0,}
print(type(params))
print(params)
```

```
<class 'dict'>
{'parameter2': 2.0, 'parameter3': 3.0, 'parameter1': 1.0}
```

```
In[84]:
print("parameter1 = " + str(params["parameter1"]))
print("parameter2 = " + str(params["parameter2"]))
print("parameter3 = " + str(params["parameter3"]))
```

```
parameter1 = 1.0
parameter2 = 2.0
parameter3 = 3.0
```
params["parameter1"] = "A"
params["parameter2"] = "B"

add a new entry
params["parameter4"] = "D"

print("parameter1 = " + str(params["parameter1"]))
print("parameter2 = " + str(params["parameter2"]))
print("parameter3 = " + str(params["parameter3"]))
print("parameter4 = " + str(params["parameter4"]))

parameter1 = A
parameter2 = B
parameter3 = 3.0
parameter4 = D

2.7 Control Flow

2.7.1 Conditional statements: if, elif, else

The Python syntax for conditional execution of code use the keywords if, elif (else if), else:

```
In[86]:
statement1 = False
statement2 = False

if statement1:
    print("statement1 is True")
elif statement2:
    print("statement2 is True")
else:
    print("statement1 and statement2 are False")
```

statement1 and statement2 are False

For the first time, here we encounted a peculiar and unusual aspect of the Python programming language: Program blocks are defined by their indentation level.

Compare to the equivalent C code:

```
if (statement1)
{
    printf("statement1 is True\n");
}
else if (statement2)
{
    printf("statement2 is True\n");
}
else
{
    printf("statement1 and statement2 are False\n");
}
```

In C blocks are defined by the enclosing curly brakets { and }. And the level of indentation (white space before the code statements) does not matter (completely optional).

But in Python, the extent of a code block is defined by the indentation level (usually a tab or say four white spaces). This means that we have to be careful to indent our code correctly, or else we will get syntax errors.
2.8 Loops

In Python, loops can be programmed in a number of different ways. The most common is the for loop, which is used together with iterable objects, such as lists. The basic syntax is:

2.8.1 for loops:

```python
In[91]: for x in [1,2,3]:
    print(x)
```

```
1
2
3
```

The for loop iterates over the elements of the supplied list, and executes the containing block once for each element. Any kind of list can be used in the for loop. For example:
In[92]:
for x in range(4):
 # by default range start at 0
 print(x)

 0
 1
 2
 3

Note: range(4) does not include 4!

In[93]:
for x in range(-3,3):
 print(x)

-3
-2
-1
0
1
2

In[94]:
for word in ['scientific', 'computing', 'with', 'python']:
 print(word)

scientific
computing
with
python

To iterate over key-value pairs of a dictionary:

In[95]:
for key, value in params.items():
 print(key + " = " + str(value))

parameter1 = A
parameter2 = B
parameter3 = 3.0
parameter4 = D

Sometimes it is useful to have access to the indices of the values when iterating over a list. We can use the `enumerate` function for this:

In[96]:
for idx, x in enumerate(range(-3,3)):
 print(idx, x)

0 -3
1 -2
2 -1
3 0
4 1
5 2

2.8.2 List comprehensions: Creating lists using for loops:

A convenient and compact way to initialize lists:

In[97]:
ll = [x**2 for x in range(0,5)]
print(ll)

[0, 1, 4, 9, 16]
2.8.3 while loops:

```
In[98]:
    i = 0
    while i < 5:
        print(i)
        i = i + 1
    print("done")

0
1
2
3
4
done
```

Note that the `print("done")` statement is not part of the `while` loop body because of the difference in indentation.

2.9 Functions

A function in Python is defined using the keyword `def`, followed by a function name, a signature within parentheses `()`, and a colon `:`. The following code, with one additional level of indentation, is the function body.

```
In[99]:
    def func0():
        print("test")

In[100]:
    func0()

test
```

Optionally, but highly recommended, we can define a so called “docstring”, which is a description of the functions purpose and behavior. The docstring should follow directly after the function definition, before the code in the function body.

```
In[101]:
    def func1(s):
        
        
        """Print a string 's' and tell how many characters it has
        """
        print(s + " has " + str(len(s)) + " characters")

In[102]:
    help(func1)

Help on function func1 in module _main_:

func1(s)
    Print a string 's' and tell how many characters it has

In[103]:
    func1("test")
```
Functions that return a value use the `return` keyword:

```python
def square(x):
    """
    Return the square of x.
    """
    return x ** 2
```

```
In[105]: square(4)
Out[105]: 16
```

We can return multiple values from a function using tuples (see above):

```python
def powers(x):
    """
    Return a few powers of x.
    """
    return x ** 2, x ** 3, x ** 4
```

```
In[107]: powers(3)
Out[107]: (9, 27, 81)
```

```
x2, x3, x4 = powers(3)
print(x3)
```

```
27
```

2.9.1 Default argument and keyword arguments

In a definition of a function, we can give default values to the arguments the function takes:

```python
def myfunc(x, p=2, debug=False):
    if debug:
        print("evaluating myfunc for x = " + str(x) + " using exponent p = " + str(p))
    return x**p
```

If we don’t provide a value of the `debug` argument when calling the function `myfunc` it defaults to the value provided in the function definition:

```
In[110]: myfunc(5)
Out[110]: 25
```

```
In[111]: myfunc(5, debug=True)
```

```
evaluating myfunc for x = 5 using exponent p = 2
```
If we explicitly list the name of the arguments in the function calls, they do not need to come in the same order as in the function definition. This is called keyword arguments, and is often very useful in functions that take a lot of optional arguments.

```python
myfunc(p=3, debug=True, x=7)
```

Evaluating myfunc for x = 7 using exponent p = 3

2.9.2 Unnamed functions (lambda function)

In Python we can also create unnamed functions, using the `lambda` keyword:

```python
f1 = lambda x: x**2
# is equivalent to
def f2(x):
    return x**2
```

This technique is useful for example when we want to pass a simple function as an argument to another function, like this:

```python
map(lambda x: x**2, range(-3,4))
```

In Python 3 we can use `'list(...) to convert the iterator to an explicit list`

```python
list(map(lambda x: x**2, range(-3,4)))
```

2.10 Classes

Classes are the key features of object-oriented programming. A class is a structure for representing an object and the operations that can be performed on the object.

In Python a class can contain attributes (variables) and methods (functions).

A class is defined almost like a function, but using the `class` keyword, and the class definition usually contains a number of class method definitions (a function in a class).

- Each class method should have an argument `self` as it first argument. This object is a self-reference.
- Some class method names have special meaning, for example:
 - `__init__`: The name of the method that is invoked when the object is first created.
- **str**: A method that is invoked when a simple string representation of the class is needed, as for example when printed.
- There are many more, see http://docs.python.org/2/reference/datamodel.html#special-method-names

```python
In[117]: class Point:
    """
    Simple class for representing a point in a Cartesian coordinate system.
    """
    def __init__(self, x, y):
        """
        Create a new Point at x, y.
        """
        self.x = x
        self.y = y
    def translate(self, dx, dy):
        """
        Translate the point by dx and dy in the x and y direction.
        """
        self.x += dx
        self.y += dy
    def __str__(self):
        return("Point at [%.f, %.f]" % (self.x, self.y))
```

To create a new instance of a class:

```python
In[118]: p1 = Point(0, 0)  # this will invoke the __init__ method in the Point class
print(p1)            # this will invoke the __str__ method
                    # this will invoke the __str__ method
Point at [0.000000, 0.000000]
```

To invoke a class method in the class instance `p`:

```python
In[119]: p2 = Point(1, 1)
p1.translate(0.25, 1.5)
p1
print(p1)
p2
```

```python
Point at [0.250000, 1.500000]
Point at [1.000000, 1.000000]
```

Note that calling class methods can modify the state of that particular class instance, but does not effect other class instances or any global variables.

That is one of the nice things about object-oriented design: code such as functions and related variables are grouped in separate and independent entities.

2.11 Modules

One of the most important concepts in good programming is to reuse code and avoid repetitions.

The idea is to write functions and classes with a well-defined purpose and scope, and reuse these instead of repeating similar code in different part of a program (modular programming). The result is usually that readability and maintainability of a program is greatly improved. What this means in practice is that our programs have fewer bugs, are easier to extend and debug/troubleshoot.
Python supports modular programming at different levels. Functions and classes are examples of tools for low-level modular programming. Python modules are a higher-level modular programming construct, where we can collect related variables, functions and classes in a module. A python module is defined in a python file (with file-ending .py), and it can be made accessible to other Python modules and programs using the import statement.

Consider the following example: the file `mymodule.py` contains simple example implementations of a variable, function and a class:

```python
# %%file mymodule.py

"""
Example of a python module. Contains a variable called my_variable, a function called my_function, and a class called MyClass.
"""

my_variable = 0
def my_function():
    """
    Example function
    """
    return my_variable
class MyClass:
    """
    Example class.
    """
    def __init__(self):
        self.variable = my_variable
def set_variable(self, new_value):
    """
    Set self.variable to a new value
    """
    self.variable = new_value
def get_variable(self):
    return self.variable
```

Writing `mymodule.py`

We can import the module `mymodule` into our Python program using import:

```python
import mymodule
```

Use `help(module)` to get a summary of what the module provides:

```python
help(mymodule)
```

Help on module mymodule:

NAME
mymodule

DESCRIPTION
Example of a python module. Contains a variable called my_variable, a function called my_function, and a class called MyClass.

CLASSES
builtins.object
MyClass
class MyClass(builtins.object)
Example class.

Methods defined here:

```
_init_(self)
get_variable(self)
set_variable(self, new_value)
    Set self.variable to a new value
```

Data descriptors defined here:

```
__dict__
dictionary for instance variables (if defined)

__weakref__
list of weak references to the object (if defined)
```

FUNCTIONS

my_function()
Example function

DATA

my_variable = 0

FILE

/home/rob/Desktop/scientific-python-lectures/mymodule.py

In[123]: mymodule.my_variable

Out[123]: 0

In[124]: mymodule.my_function()

Out[124]: 0

In[125]: my_class = mymodule.MyClass()
my_class.set_variable(10)
my_class.get_variable()

Out[125]: 10

If we make changes to the code in mymodule.py, we need to reload it using `reload`:

In[]: reload(mymodule) # works only in python 2

2.12 Exceptions

In Python errors are managed with a special language construct called “Exceptions”. When errors occur exceptions can be raised, which interrupts the normal program flow and fallback to somewhere else in the code where the closest try-except statement is defined.

To generate an exception we can use the `raise` statement, which takes an argument that must be an instance of the class `BaseException` or a class derived from it.
A typical use of exceptions is to abort functions when some error condition occurs, for example:

```python
def my_function(arguments):
    if not verify(arguments):
        raise Exception("Invalid arguments")
    # rest of the code goes here
```

To gracefully catch errors that are generated by functions and class methods, or by the Python interpreter itself, use the `try` and `except` statements:

```python
try:
    # normal code goes here
except:
    # code for error handling goes here
    # this code is not executed unless the code above generated an error
```

For example:

```python
In[128]:
try:
    print("test")
    # generate an error: the variable test is not defined
    print(test)
except:
    print("Caught an exception")
```

```
test
Caught an exception
```

To get information about the error, we can access the `Exception` class instance that describes the exception by using for example:

```python
except Exception as e:
```

```
In[129]:
try:
    print("test")
    # generate an error: the variable test is not defined
    print(test)
except Exception as e:
    print("Caught an exception:" + str(e))
```

```
test
Caught an exception:name 'test' is not defined
```
2.13 Further reading

2.14 Versions

In[132]: %load_ext version_information
%version_information

Out[132]:

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>3.3.2+ (default, Oct 9 2013, 14:50:09) [GCC 4.8.1]</td>
</tr>
<tr>
<td>IPython</td>
<td>1.1.0</td>
</tr>
<tr>
<td>OS</td>
<td>posix</td>
</tr>
</tbody>
</table>

Mon Nov 11 15:10:50 2013 KST
Chapter 3

Numpy - multidimensional data arrays

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

In[1]: # what is this line all about?!? Answer in lecture 4
%pylab inline

Populating the interactive namespace from numpy and matplotlib

3.1 Introduction

The numpy package (module) is used in almost all numerical computation using Python. It is a package that provide high-performance vector, matrix and higher-dimensional data structures for Python. It is implemented in C and Fortran so when calculations are vectorized (formulated with vectors and matrices), performance is very good.

To use numpy need to import the module it using of example:

In[2]: from numpy import *

In the numpy package the terminology used for vectors, matrices and higher-dimensional data sets is array.

3.2 Creating numpy arrays

There are a number of ways to initialize new numpy arrays, for example from

- a Python list or tuples
- using functions that are dedicated to generating numpy arrays, such as arange, linspace, etc.
- reading data from files

3.2.1 From lists

For example, to create new vector and matrix arrays from Python lists we can use the numpy.array function.
a vector: the argument to the array function is a Python list
v = array([1, 2, 3, 4])

```
[In3]: v
```
```
Out[3]: array([1, 2, 3, 4])
```

a matrix: the argument to the array function is a nested Python list
M = array([[1, 2], [3, 4]])

```
[In4]: M
```
```
Out[4]: array([[1, 2],
               [3, 4]])
```

The `v` and `M` objects are both of the type `ndarray` that the `numpy` module provides.

```
[In5]: type(v), type(M)
```
```
Out[5]: (numpy.ndarray, numpy.ndarray)
```

The difference between the `v` and `M` arrays is only their shapes. We can get information about the shape of an array by using the `ndarray.shape` property.

```
[In6]: v.shape
```
```
Out[6]: (4,)
```

```
[In7]: M.shape
```
```
Out[7]: (2, 2)
```

The number of elements in the array is available through the `ndarray.size` property:

```
[In8]: M.size
```
```
Out[8]: 4
```

Equivalently, we could use the function `numpy.shape` and `numpy.size`

```
[In9]: shape(M)
```
```
Out[9]: (2, 2)
```

```
[In10]: size(M)
```
```
Out[10]: 39
```
So far the `numpy.ndarray` looks awfully much like a Python list (or nested list). Why not simply use Python lists for computations instead of creating a new array type?

There are several reasons:

- Python lists are very general. They can contain any kind of object. They are dynamically typed. They do not support mathematical functions such as matrix and dot multiplications, etc. Implementing such functions for Python lists would not be very efficient because of the dynamic typing.
- Numpy arrays are **statically typed** and **homogeneous**. The type of the elements is determined when array is created.
- Numpy arrays are memory efficient.
- Because of the static typing, fast implementation of mathematical functions such as multiplication and addition of numpy arrays can be implemented in a compiled language (C and Fortran is used).

Using the `dtype` (data type) property of an `ndarray`, we can see what type the data of an array has:

```python
In[11]: M.dtype
```

```python
Out[11]: dtype('int64')
```

We get an error if we try to assign a value of the wrong type to an element in a numpy array:

```python
In[12]: M[0,0] = "hello"
```

```
---------------------------------------------------------------------------
ValueError               Traceback (most recent call last)
<ipython-input-12-a09d72434238> in <module>()
      1 M[0,0] = "hello"
----> 2

ValueError: invalid literal for int() with base 10: 'hello'
```

If we want, we can explicitly define the type of the array data when we create it, using the `dtype` keyword argument:

```python
In[13]: M = array([[1, 2], [3, 4]], dtype=complex)
```

```python
Out[13]: array([[ 1.+0.j, 2.+0.j],
                 [ 3.+0.j, 4.+0.j]])
```

Common type that can be used with `dtype` are: `int`, `float`, `complex`, `bool`, `object`, etc.

We can also explicitly define the bit size of the data types, for example: `int64`, `int16`, `float128`, `complex128`.

3.2.2 Using array-generating functions

For larger arrays it is impractical to initialize the data manually, using explicit python lists. Instead we can use one of the many functions in `numpy` that generates arrays of different forms. Some of the more common are:
In[14]: # create a range
x = arange(0, 10, 1) # arguments: start, stop, step
x

Out[14]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In[15]: x = arange(-1, 0, 0.1)
x

Out[15]: array([-1.00000000e+00, -9.00000000e-01, -8.00000000e-01,
 -7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
 -4.00000000e-01, -3.00000000e-01, -2.00000000e-01,
 -1.00000000e-01, -2.22044605e-16, 1.00000000e-01,
 2.00000000e-01, 3.00000000e-01, 4.00000000e-01,
 5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
 8.00000000e-01, 9.00000000e-01])

In[16]: # using linspace, both end points ARE included
linspace(0, 10, 25)

Out[16]: array([0. , 0.41666667, 0.83333333, 1.25 ,
 1.66666667, 2.08333333, 2.5 , 2.91666667,
 3.33333333, 3.75 , 4.16666667, 4.58333333,
 5. , 5.41666667, 5.83333333, 6.25 ,
 6.66666667, 7.08333333, 7.5 , 7.91666667,
 8.33333333, 8.75 , 9.16666667, 9.58333333, 10.])

In[17]: logspace(0, 10, 10, base=e)

Out[17]: array([1.00000000e+00, 3.03773178e+00, 9.22781435e+00,
 2.80316249e+01, 8.51525577e+01, 2.58670631e+02,
 7.85771994e+02, 2.38696456e+03, 7.25095809e+03,
 2.20264658e+04])

In[18]: x, y = mgrid[0:5, 0:5] # similar to meshgrid in MATLAB

In[19]: x

Out[19]: array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1],
 [2, 2, 2, 2, 2], [3, 3, 3, 3, 3],
 [4, 4, 4, 4, 4]])
random data

In[21]: from numpy import random

In[22]: # uniform random numbers in [0,1]
random.rand(5,5)

Out[22]: array([[0.30550798, 0.91803791, 0.93239421, 0.28751598, 0.04860825],
 [0.45066196, 0.76661561, 0.52674476, 0.8059367 , 0.1117966],
 [0.05369232, 0.48848972, 0.74334693, 0.71935866, 0.35233569],
 [0.13872424, 0.58346613, 0.37483754, 0.59727255, 0.38859949],
 [0.29037136, 0.8360109 , 0.63106782, 0.58906755, 0.64758577]])

In[23]: # standard normal distributed random numbers
random.randn(5,5)

Out[23]: array([[0.28795069, -0.35938689, -0.31555872, 0.48542156, 0.26751156],
 [2.1368908, 0.85288911, -0.70587016, 0.98492216, -0.99610179],
 [0.49670578, -0.08179433, 0.58322716, -0.21797477, -1.16777687],
 [-0.3343575 , 0.20369114, -0.31390896, 0.3598063 , 0.36981814],
 [0.4876012 , 1.9979494 , 0.75177876, -1.80697478, 1.64069423]])

diag

In[24]: # a diagonal matrix
diag([1,2,3])

Out[24]: array([[1, 0, 0],
 [0, 2, 0],
 [0, 0, 3]])

In[25]: # diagonal with offset from the main diagonal
diag([1,2,3], k=1)

Out[25]: array([[0, 1, 0, 0],
 [0, 0, 2, 0],
 [0, 0, 0, 3],
 [0, 0, 0, 0]])

zeros and ones
3.3 File I/O

3.3.1 Comma-separated values (CSV)

A very common file format for data files are the comma-separated values (CSV), or related format such as TSV (tab-separated values). To read data from such file into Numpy arrays we can use the `numpy.genfromtxt` function. For example,

```python
In[28]: !head stockholm_td_adj.dat
```

```plaintext
1800 1 1 -6.1 -6.1 -6.1 1
1800 1 2 -15.4 -15.4 -15.4 1
1800 1 3 -15.0 -15.0 -15.0 1
1800 1 4 -19.3 -19.3 -19.3 1
1800 1 5 -16.8 -16.8 -16.8 1
1800 1 6 -11.4 -11.4 -11.4 1
1800 1 7 -7.6 -7.6 -7.6 1
1800 1 8 -7.1 -7.1 -7.1 1
1800 1 9 -10.1 -10.1 -10.1 1
1800 1 10 -9.5 -9.5 -9.5 1
```

```python
In[29]: data = genfromtxt('stockholm_td_adj.dat')
In[30]: data.shape
Out[30]: (77431, 7)
```

```python
fig, ax = subplots(figsize=(14,4))
ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])
ax.axis('tight')
ax.set_title('tempeatures in Stockholm')
ax.set_xlabel('year')
ax.set_ylabel('temperature (C)');
```
Using `numpy.savetxt` we can store a Numpy array to a file in CSV format:

```python
In[32]: M = rand(3,3)

Out[32]:
array([[ 0.70506801, 0.54618952, 0.31039856],
       [ 0.26640475, 0.10358152, 0.73231132],
       [ 0.07987128, 0.34462854, 0.91114433]])

In[33]: savetxt("random-matrix.csv", M)

In[34]: !cat random-matrix.csv

7.050680113576863750e-01 5.461895177867910345e-01 3.103985627238065037e-01
2.664047486311884594e-01 1.035815249084012235e-01 7.323113219935466489e-01
7.987128326702574999e-02 3.446285401590922781e-01 9.111443300153220237e-01

In[35]: savetxt("random-matrix.csv", M, fmt='%.5f')  # fmt specifies the format

!cat random-matrix.csv

0.70507 0.54619 0.31040
0.26640 0.10358 0.73231
0.07987 0.34463 0.91114

3.3.2 Numpy’s native file format

Useful when storing and reading back numpy array data. Use the functions `numpy.save` and `numpy.load`:

```python
In[36]: save("random-matrix.npy", M)

In[37]: load("random-matrix.npy")

Out[37]:
array([[0.70506801, 0.54618952, 0.31039856],
 [0.26640475, 0.10358152, 0.73231132],
 [0.07987128, 0.34462854, 0.91114433]])
```
3.4 More properties of the numpy arrays

In[38]: M.itemsize # bytes per element
Out[38]: 8

In[39]: M.nbytes # number of bytes
Out[39]: 72

In[40]: M.ndim # number of dimensions
Out[40]: 2

3.5 Manipulating arrays

3.5.1 Indexing

We can index elements in an array using the square bracket and indices:

In[41]: # v is a vector, and has only one dimension, taking one index
   v[0]
Out[41]: 1

In[42]: # M is a matrix, or a 2 dimensional array, taking two indices
   M[1,1]
Out[42]: 0.10358152490840122

If we omit an index of a multidimensional array it returns the whole row (or, in general, a N-1 dimensional array)

In[43]: M
Out[43]: array([[ 0.70506801,  0.54618952,  0.31039856],
                 [ 0.26640475,  0.10358152,  0.73231132],
                 [ 0.07987128,  0.34462854,  0.91114433]])

In[44]: M[1, :]
Out[44]: array([ 0.26640475,  0.10358152,  0.73231132])

The same thing can be achieved with using : instead of an index:

In[45]: M[1, :] # row 1
Out[45]: array([ 0.26640475,  0.10358152,  0.73231132])
In[46]: M[:,1]  # column 1

Out[46]: array([ 0.54618952, 0.10358152, 0.34462854])

We can assign new values to elements in an array using indexing:

In[47]: M[0,0] = 1
In[48]: M

Out[48]: array([[ 1. , 0.54618952, 0.31039856],
        [ 0.26640475, 0.10358152, 0.73231132],
        [ 0.07987128, 0.34462854, 0.91114433]])

In[49]: # also works for rows and columns
M[1,:]= 0
M[:,2] = -1

In[50]: M

Out[50]: array([[ 1. , 0.54618952, -1. ],
        [ 0. , 0. , -1. ],
        [ 0.07987128, 0.34462854, -1. ]])

3.5.2 Index slicing

Index slicing is the technical name for the syntax M[lower:upper:step] to extract part of an array:

In[51]: A = array([1,2,3,4,5])

A

Out[51]: array([1, 2, 3, 4, 5])

In[52]: A[1:3]

Out[52]: array([2, 3])

Array slices are mutable: if they are assigned a new value the original array from which the slice was extracted is modified:

In[53]: A[1:3] = [-2,-3]

A

Out[53]: array([-2, -3, 4, 5])

We can omit any of the three parameters in M[lower:upper:step]:

In[54]: A[:,: ]  # lower, upper, step all take the default values

Out[54]: array([1, -2, -3, 4, 5])

46
In[55]: A::2 # step is 2, lower and upper defaults to the beginning and end of the array
Out[55]: array([ 1, -3,  5])

In[56]: A[:3] # first three elements
Out[56]: array([ 1, -2, -3])

In[57]: A[3:] # elements from index 3
Out[57]: array([4, 5])

Negative indices counts from the end of the array (positive index from the begining):

In[58]: A = array([1,2,3,4,5])
In[59]: A[-1] # the last element in the array
Out[59]: 5
In[60]: A[-3:] # the last three elements
Out[60]: array([3, 4, 5])

Index slicing works exactly the same way for multidimensional arrays:

In[61]: A = array([[n+m*10 for n in range(5)] for m in range(5)])
In[61]: A
Out[61]: array([[ 0,  1,  2,  3,  4],
                    [10, 11, 12, 13, 14],
                    [20, 21, 22, 23, 24],
                    [30, 31, 32, 33, 34],
                    [40, 41, 42, 43, 44]])

In[62]: # a block from the original array
Out[62]: array([[11, 12, 13],
                    [21, 22, 23],
                    [31, 32, 33]])

In[63]: # strides
A[::2, ::2]
Out[63]: array([[ 0,  2,  4],
                    [20, 22, 24],
                    [40, 42, 44]])
3.5.3 Fancy indexing

Fancy indexing is the name for when an array or list is used in-place of an index:

```
In[64]: row_indices = [1, 2, 3]
 A[row_indices]
Out[64]: array([[10, 11, 12, 13, 14],
 [20, 21, 22, 23, 24],
 [30, 31, 32, 33, 34]])
```

```
In[65]: col_indices = [1, 2, -1] # remember, index -1 means the last element
 A[row_indices, col_indices]
Out[65]: array([11, 22, 34])
```

We can also index masks: If the index mask is an Numpy array of with data type bool, then an element is selected (True) or not (False) depending on the value of the index mask at the position each element:

```
In[66]: B = array([n for n in range(5)])
 B
Out[66]: array([0, 1, 2, 3, 4])
```

```
In[67]: row_mask = array([True, False, True, False, False])
 B[row_mask]
Out[67]: array([0, 2])
```

```
In[68]: # same thing
 row_mask = array([1, 0, 1, 0, 0], dtype=bool)
 B[row_mask]
Out[68]: array([0, 2])
```

This feature is very useful to conditionally select elements from an array, using for example comparison operators:

```
In[69]: x = arange(0, 10, 0.5)
 x
Out[69]: array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ,
 5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])
```

```
In[70]: mask = (5 < x) * (x < 7.5)
 mask
Out[70]: array([False, False, True, True, True, True, False, False, False, False, False], dtype=bool)
```
3.6 Functions for extracting data from arrays and creating arrays

3.6.1 where

The index mask can be converted to position index using the `where` function.

```python
In[72]: indices = where(mask)
 (indices)
```

```python
Out[72]: (array([11, 12, 13, 14]),)
```

```python
In[73]: x[indices] # this indexing is equivalent to the fancy indexing x[mask]
```

```python
Out[73]: array([5.5, 6. , 6.5, 7.])
```

3.6.2 diag

With the `diag` function we can also extract the diagonal and subdiagonals of an array:

```python
In[74]: diag(A)
```

```python
Out[74]: array([0, 11, 22, 33, 44])
```

```python
In[75]: diag(A, -1)
```

```python
Out[75]: array([10, 21, 32, 43])
```

3.6.3 take

The `take` function is similar to fancy indexing described above:

```python
In[76]: v2 = arange(-3,3)
v2
```

```python
Out[76]: array([-3, -2, -1, 0, 1, 2])
```

```python
In[77]: row_indices = [1, 3, 6]
v2[row_indices] # fancy indexing
```

```python
Out[77]: array([-2, 0, 2])
```
In[78]: v2.take(row_indices)

Out[78]: array([-2, 0, 2])

But `take` also works on lists and other objects:

In[79]: take([-3, -2, -1, 0, 1, 2], row_indices)

Out[79]: array([-2, 0, 2])

3.6.4 choose

Constructs and array by picking elements form several arrays:

In[80]: which = [1, 0, 1, 0]
   choices = [[-2,-2,-2,-2], [5,5,5,5]]
   choose(which, choices)

Out[80]: array([ 5, -2, 5, -2])

3.7 Linear algebra

Vectorizing code is the key to writing efficient numerical calculation with Python/Numpy. That means that as much as possible of a program should be formulated in terms of matrix and vector operations, like matrix-matrix multiplication.

3.7.1 Scalar-array operations

We can use the usual arithmetic operators to multiply, add, subtract, and divide arrays with scalar numbers.

In[81]: v1 = arange(0, 5)

In[82]: v1 * 2

Out[82]: array([0, 2, 4, 6, 8])

In[83]: v1 + 2

Out[83]: array([2, 3, 4, 5, 6])

In[84]: A = 2, A + 2

Out[84]: (array([[ 0, 2, 4, 6, 8],
[20, 22, 24, 26, 28],
[40, 42, 44, 46, 48],
[60, 62, 64, 66, 68],
[80, 82, 84, 86, 88]]),
array([[ 2, 3, 4, 5, 6],
[12, 13, 14, 15, 16],
[22, 23, 24, 25, 26],
[32, 33, 34, 35, 36],
[42, 43, 44, 45, 46]]))
3.7.2 Element-wise array-array operations

When we add, subtract, multiply and divide arrays with each other, the default behaviour is **element-wise** operations:

```
In[85]: A * A # element-wise multiplication
```

```
Out[85]: array([[0, 1, 4, 9, 16],
 [100, 121, 144, 169, 196],
 [400, 441, 484, 529, 576],
 [900, 961, 1024, 1089, 1156],
 [1600, 1681, 1764, 1849, 1936]])
```

```
In[86]: v1 * v1
```

```
Out[86]: array([0, 1, 4, 9, 16])
```

If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row:

```
In[87]: A.shape, v1.shape
```

```
Out[87]: ((5, 5), (5,))
```

```
In[88]: A * v1
```

```
Out[88]: array([[0, 1, 4, 9, 16],
 [0, 11, 24, 39, 56],
 [0, 21, 44, 69, 96],
 [0, 31, 64, 99, 136],
 [0, 41, 84, 129, 176]])
```

3.7.3 Matrix algebra

What about matrix mutiplication? There are two ways. We can either use the `dot` function, which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments:

```
In[89]: dot(A, A)
```

```
Out[89]: array([[300, 310, 320, 330, 340],
 [1300, 1360, 1420, 1480, 1540],
 [2300, 2410, 2520, 2630, 2740],
 [3300, 3460, 3620, 3780, 3940],
 [4300, 4510, 4720, 4930, 5140]])
```

```
In[90]: dot(A, v1)
```

```
Out[90]: array([30, 130, 230, 330, 430])
```

```
In[91]: dot(v1, v1)
```

```
51
```
Alternatively, we can cast the array objects to the type `matrix`. This changes the behavior of the standard arithmetic operators `+`, `-`, `*` to use matrix algebra.

```python
In[92]: M = matrix(A)
 v = matrix(v1).T # make it a column vector

In[93]: v

Out[93]: matrix([[0],
 [1],
 [2],
 [3],
 [4]])

In[94]: M * M

Out[94]: matrix([[300, 310, 320, 330, 340],
 [1300, 1360, 1420, 1480, 1540],
 [2300, 2410, 2520, 2630, 2740],
 [3300, 3460, 3620, 3780, 3940],
 [4300, 4510, 4720, 4930, 5140]])

In[95]: M * v

Out[95]: matrix([[30],
 [130],
 [230],
 [330],
 [430]])

In[96]: # inner product
 v.T * v

Out[96]: matrix([[30]])

In[97]: # with matrix objects, standard matrix algebra applies
 v + M*v

Out[97]: matrix([[30],
 [131],
 [232],
 [333],
 [434]])
```

If we try to add, subtract or multiply objects with incompatible shapes we get an error:

```python
In[98]: v = matrix([1,2,3,4,5,6]).T
```
In[99]:  shape(M), shape(v)

Out[99]:  ((5, 5), (6, 1))

In[100]:  M * v

---------------------------------------------------------------------------
ValueError

Traceback (most recent call last)
<ipython-input-100-995fb48ad0cc> in <module>()
----> 1 M * v

/usr/local/lib/python3.3/dist-packages/numpy/matrixlib/defmatrix.py in _mul_(self, other)
    339     if isinstance(other, (N.ndarray, list, tuple)) :
    340         # This promotes 1-D vectors to row vectors
--> 341         return N.dot(self, asmatrix(other))
    342     if isscalar(other) or not hasattr(other, '_rmul_') :
    343         return N.dot(self, other)

ValueError: objects are not aligned

See also the related functions: inner, outer, cross, kron, tensordot. Try for example help(kron).

3.7.4 Array/Matrix transformations

Above we have used the .T to transpose the matrix object v. We could also have used the transpose function to accomplish the same thing.

Other mathematical functions that transforms matrix objects are:

In[101]:  C = matrix([[1j, 2j], [3j, 4j]])

C

Out[101]:  matrix([[ 0.+1.j, 0.+2.j],
[ 0.+3.j, 0.+4.j]])

In[102]:  conjugate(C)

Out[102]:  matrix([[ 0.-1.j, 0.-3.j],
[ 0.-2.j, 0.-4.j]])

Hermitian conjugate: transpose + conjugate

In[103]:  C.H

Out[103]:  matrix([[ 0.-1.j, 0.-3.j],
[ 0.-2.j, 0.-4.j]])

We can extract the real and imaginary parts of complex-valued arrays using real and imag:

In[104]:  real(C)  # same as: C.real

Out[104]:  matrix([[ 0., 0.],
[ 0., 0.]])
In[105]: imag(C) # same as: C.imag

Out[105]: matrix([[ 1., 2.],
                  [ 3., 4.]]).

Or the complex argument and absolute value

In[106]: angle(C+1) # heads up MATLAB Users, angle is used instead of arg

Out[106]: array([[ 0.78539816, 1.10714872],
                  [ 1.24904577, 1.32581766]])

In[107]: abs(C)

Out[107]: matrix([[ 1., 2.],
                  [ 3., 4.]]).

### 3.7.5 Matrix computations

#### Inverse

In[108]: inv(C) # equivalent to C.I

Out[108]: matrix([[ 0.+2.j , 0.-1.j ],
                  [ 0.-1.5j, 0.+0.5j]])

In[109]: C.I * C

Out[109]: matrix([[ 1.00000000e+00+0.j, 4.44089210e-16+0.j],
                  [ 0.00000000e+00+0.j, 1.00000000e+00+0.j]])

#### Determinant

In[110]: det(C)

Out[110]: (2.0000000000000004+0j)

In[111]: det(C.I)

Out[111]: (0.50000000000000011+0j)

### 3.7.6 Data processing

Often it is useful to store datasets in Numpy arrays. Numpy provides a number of functions to calculate statistics of datasets in arrays.

For example, let’s calculate some properties data from the Stockholm temperature dataset used above.
# reminder, the temperature dataset is stored in the data variable:

```python
shape(data)
```

```
Out[112]: (77431, 7)
```

**mean**

```python
the temperature data is in column 3
mean(data[:,3])
```

```
Out[113]: 6.1971096847515925
```

The daily mean temperature in Stockholm over the last 200 year so has been about 6.2 C.

**standard deviations and variance**

```python
std(data[:,3]), var(data[:,3])
```

```
Out[114]: (8.2822716213405663, 68.596023209663286)
```

**min and max**

```python
lowest daily average temperature
data[:,3].min()
```

```
Out[115]: -25.800000000000001
```

```python
highest daily average temperature
data[:,3].max()
```

```
Out[116]: 28.300000000000001
```

**sum, prod, and trace**

```python
d = arange(0, 10)
d
```

```
Out[117]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```python
sum up all elements
sum(d)
```

```
Out[118]: 45
```
In[119]: # product of all elements
prod(d+1)

Out[119]: 3628800

In[120]: # cumulative sum
cumsum(d)

Out[120]: array([ 0,  1,  3,  6, 10, 15, 21, 28, 36, 45])

In[121]: # cumulative product
cumprod(d+1)

Out[121]: array([  1,   2,   6,  24, 120, 720, 5040,
      40320, 362880, 3628800])

In[122]: # same as: diag(A).sum()
trace(A)

Out[122]: 110

### 3.7.7 Computations on subsets of arrays

We can compute with subsets of the data in an array using indexing, fancy indexing, and the other methods
of extracting data from an array (described above).

For example, let’s go back to the temperature dataset:

In[123]: !head -n 3 stockholm_td_adj.dat

    1800 1  1 -6.1  -6.1  -6.1  1
    1800 1  2 -15.4 -15.4 -15.4 1
    1800 1  3 -15.0 -15.0 -15.0 1

The data format is: year, month, day, daily average temperature, low, high, location.

If we are interested in the average temperature only in a particular month, say February, then we can
create a index mask and use the select out only the data for that month using:

In[124]: unique(data[:,1]) # the month column takes values from 1 to 12

Out[124]: array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,
      12.])

In[125]: mask_feb = data[:,1] == 2

In[126]: # the temperature data is in column 3
mean(data[mask_feb,3])

Out[126]: -3.2121095707366085

With these tools we have very powerful data processing capabilities at our disposal. For example, to extract
the average monthly average temperatures for each month of the year only takes a few lines of code:
3.7.8 Calculations with higher-dimensional data

When functions such as `min`, `max`, etc., is applied to a multidimensional arrays, it is sometimes useful to apply the calculation to the entire array, and sometimes only on a row or column basis. Using the `axis` argument we can specify how these functions should behave:

```
In[128]: m = rand(3,3)
m
```

```
Out[128]: array([[0.09260423, 0.73349712, 0.43306604],
 [0.65890098, 0.4972126 , 0.83049668],
 [0.80428551, 0.0817173 , 0.57833117]])
```

```
In[129]: # global max
 m.max()
```

```
Out[129]: 0.83049668273782951
```

```
In[130]: # max in each column
 m.max(axis=0)
```

Out[130]: array([0.80428551, 0.73349712, 0.83049668])

In[131]:
# max in each row
m.max(axis=1)

Out[131]: array([0.73349712, 0.83049668, 0.80428551])

Many other functions and methods in the array and matrix classes accept the same (optional) axis keyword argument.

### 3.8 Reshaping, resizing and stacking arrays

The shape of an Numpy array can be modified without copying the underlying data, which makes it a fast operation even for large arrays.

In[132]: A

Out[132]:
array([[ 0, 1, 2, 3, 4],
      [10, 11, 12, 13, 14],
      [20, 21, 22, 23, 24],
      [30, 31, 32, 33, 34],
      [40, 41, 42, 43, 44]])

In[133]: n, m = A.shape

In[134]: B = A.reshape((1,n*m))

Out[134]: array([[ 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44]])

In[135]: B[0,0:5] = 5 # modify the array

Out[135]: array([[ 5, 5, 5, 5, 5, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44]])

In[136]: A # and the original variable is also changed. B is only a different view of the same data

Out[136]: array([[ 0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44]])

We can also use the function flatten to make a higher-dimensional array into a vector. But this function create a copy of the data.

In[137]: B = A.flatten()

Out[137]: 58
3.9 Adding a new dimension: newaxis

With `newaxis`, we can insert new dimensions in an array, for example converting a vector to a column or row matrix:

```python
In[140]: v = array([1,2,3])

In[141]: shape(v)
Out[141]: (3,)

In[142]: # make a column matrix of the vector v
 v[:, newaxis]
Out[142]: array([[1],
 [2],
 [3]])

In[143]: # column matrix
 v[:, newaxis].shape
Out[143]: (3, 1)

In[144]: # row matrix
 v[newaxis,:].shape
Out[144]: (1, 3)
```

3.10 Stacking and repeating arrays

Using function `repeat`, `tile`, `vstack`, `hstack`, and `concatenate` we can create larger vectors and matrices from smaller ones:
3.10.1  tile and repeat

In[145]:
a = array([[1, 2], [3, 4]])

In[146]:
# repeat each element 3 times
repeat(a, 3)
Out[146]:
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4])

In[147]:
# tile the matrix 3 times
tile(a, 3)
Out[147]:
array([[1, 2, 1, 2, 1, 2],
       [3, 4, 3, 4, 3, 4]])

3.10.2  concatenate

In[148]:
b = array([[5, 6]])

In[149]:
c = concatenate((a, b), axis=0)
Out[149]:
array([[1, 2],
       [3, 4],
       [5, 6]])

In[150]:
c = concatenate((a, b.T), axis=1)
Out[150]:
array([[1, 2, 5],
       [3, 4, 6]])

3.10.3  hstack and vstack

In[151]:
vstack((a,b))
Out[151]:
array([[1, 2],
       [3, 4],
       [5, 6]])

In[152]:
hstack((a,b.T))
Out[152]:
array([[1, 2, 5],
       [3, 4, 6]])
3.11 Copy and “deep copy”

To achieve high performance, assignments in Python usually do not copy the underlying objects. This is important for example when objects are passed between functions, to avoid an excessive amount of memory copying when it is not necessary (technical term: pass by reference).

```python
In[153]: A = array([[1, 2], [3, 4]])

A
```

```python
Out[153]: array([[1, 2],
 [3, 4]])
```

```python
In[154]: B = A

now B is referring to the same array data as A
```

```python
In[155]: B[0,0] = 10

changing B affects A
B
```

```python
Out[155]: array([[10, 2],
 [3, 4]])
```

```python
In[156]: A

Out[156]: array([[10, 2],
 [3, 4]])
```

If we want to avoid this behavior, so that when we get a new completely independent object B copied from A, then we need to do a so-called “deep copy” using the function `copy`:

```python
In[157]: B = copy(A)

Out[157]: B = copy(A)
```

```python
In[158]: B[0,0] = -5

now, if we modify B, A is not affected
B
```

```python
Out[158]: array([[-5, 2],
 [3, 4]])
```

```python
In[159]: A

Out[159]: array([[10, 2],
 [3, 4]])
```

3.12 Iterating over array elements

Generally, we want to avoid iterating over the elements of arrays whenever we can (at all costs). The reason is that in a interpreted language like Python (or MATLAB), iterations are really slow compared to vectorized operations.

However, sometimes iterations are unavoidable. For such cases, the Python `for` loop is the most convenient way to iterate over an array:
When we need to iterate over each element of an array and modify its elements, it is convenient to use the `enumerate` function to obtain both the element and its index in the `for` loop:

```python
In[162]: for row_idx, row in enumerate(M):
 print("row_idx", row_idx, "row", row)
 for col_idx, element in enumerate(row):
 print("col_idx", col_idx, "element", element)
 # update the matrix M: square each element
 M[row_idx, col_idx] = element ** 2
```

```
row_idx 0 row [1 2]
col_idx 0 element 1
col_idx 1 element 2
row_idx 1 row [3 4]
col_idx 0 element 3
col_idx 1 element 4
```

```python
In[163]: # each element in M is now squared
M
```

```
Out[163]: array([[1, 4],
 [9, 16]])
```

### 3.13 Vectorizing functions

As mentioned several times by now, to get good performance we should try to avoid looping over elements in our vectors and matrices, and instead use vectorized algorithms. The first step in converting a scalar algorithm to a vectorized algorithm is to make sure that the functions we write work with vector inputs.
In[164]:
```python
def Theta(x):
 """
 Scalar implementation of the Heaviside step function.
 """
 if x >= 0:
 return 1
 else:
 return 0
```

In[165]:

```python
Theta(array([-3,-2,-1,0,1,2,3]))
```

```

ValueError Traceback (most recent call last)
<ipython-input-165-6658efdd2f22> in <module>()
----> 1 Theta(array([-3,-2,-1,0,1,2,3]))
<ipython-input-164-9a0cb13d93d4> in Theta(x)
 3 Scalar implementation of the Heaviside step function.
 4 """
 --> 5 if x >= 0:
 6 return 1
 7 else:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
```

OK, that didn’t work because we didn’t write the `Theta` function so that it can handle with vector input...

To get a vectorized version of `Theta` we can use the Numpy function `vectorize`. In many cases it can automatically vectorize a function:

In[166]:

```python
Theta_vec = vectorize(Theta)
```

In[167]:

```python
Theta_vec(array([-3,-2,-1,0,1,2,3]))
```

Out[167]:
```
array([0, 0, 0, 1, 1, 1, 1])
```

We can also implement the function to accept vector input from the beginning (requires more effort but might give better performance):

In[168]:

```python
def Theta(x):
 """
 Vector-aware implementation of the Heaviside step function.
 """
 return 1 * (x >= 0)
```

In[169]:

```python
Theta(array([-3,-2,-1,0,1,2,3]))
```

Out[169]:
```
array([0, 0, 0, 1, 1, 1, 1])
```
3.14 Using arrays in conditions

When using arrays in conditions in for example if statements and other boolean expressions, one need to use one of any or all, which requires that any or all elements in the array evaluates to True:

```python
In[171]: M
```

```
Out[171]: array([[1, 4],
 [9, 16]])
```

```python
In[172]: if (M > 5).any():
 print("at least one element in M is larger than 5")
else:
 print("no element in M is larger than 5")
```

```
at least one element in M is larger than 5
```

```python
In[173]: if (M > 5).all():
 print("all elements in M are larger than 5")
else:
 print("all elements in M are not larger than 5")
```

```
all elements in M are not larger than 5
```

3.15 Type casting

Since Numpy arrays are statically typed, the type of an array does not change once created. But we can explicitly cast an array of some type to another using the astype functions (see also the similar asarray function). This always create a new array of new type:

```python
In[174]: M.dtype
```

```
dtype('int64')
```

```python
In[175]: M2 = M.astype(float)
```

```
Out[175]: array([[1., 4.],
 [9., 16.]])
```

```python
In[176]: M2.dtype
```

```
dtype('float64')
```

```python
Out[176]: dtype('float64')
```
In[177]:
M3 = M.astype(bool)

M3

Out[177]: array([[ True,  True],
                 [ True,  True]], dtype=bool)

3.16 Further reading

- http://numpy.scipy.org
- http://scipy.org/Tentative_NumPy_Tutorial

3.17 Versions

In[178]:
%reload_ext version_information
%
version_information numpy

Out[178]:

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>3.3.2+ (default, Oct 9 2013, 14:50:09) [GCC 4.8.1]</td>
</tr>
<tr>
<td>IPython</td>
<td>1.1.0</td>
</tr>
<tr>
<td>OS</td>
<td>posix [linux]</td>
</tr>
<tr>
<td>numpy</td>
<td>1.8.0</td>
</tr>
<tr>
<td></td>
<td>Mon Nov 11 15:06:46 2013 KST</td>
</tr>
</tbody>
</table>
Chapter 4

SciPy - Library of scientific algorithms for Python

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

In[1]: # what is this line all about? Answer in lecture 4
%pylab inline
from IPython.display import Image

Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline]
For more information, type ‘help(pylab)’.

4.1 Introduction

The SciPy framework builds on top of the low-level NumPy framework for multidimensional arrays, and provides a large number of higher-level scientific algorithms. Some of the topics that SciPy covers are:

- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fftpack)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse Eigenvalue Problems (scipy.sparse)
- Statistics (scipy.stats)
- Multi-dimensional image processing (scipy.ndimage)
- File IO (scipy.io)

Each of these submodules provides a number of functions and classes that can be used to solve problems in their respective topics.

In this lecture we will look at how to use some of these subpackages.

To access the SciPy package in a Python program, we start by importing everything from the scipy module.
If we only need to use part of the SciPy framework we can selectively include only those modules we are interested in. For example, to include the linear algebra package under the name \texttt{la}, we can do:

```python
import scipy.linalg as la
```

## 4.2 Special functions

A large number of mathematical special functions are important for many computational physics problems. SciPy provides implementations of a very extensive set of special functions. For details, see the list of functions in the reference documentation at http://docs.scipy.org/doc/scipy/reference/special.html#module-scipy.special.

To demonstrate the typical usage of special functions we will look in more detail at the Bessel functions:

```python
from scipy.special import jn, yn, jn_zeros, yn_zeros
```

### Example

```python
n = 0 # order
x = 0.0

Bessel function of first kind
print "J_{%d}(%f) = %f" % (n, x, jn(n, x))

x = 1.0
Bessel function of second kind
print "Y_{%d}(%f) = %f" % (n, x, yn(n, x))
```

```bash
J_0(0.000000) = 1.000000
Y_0(1.000000) = 0.088257
```

```python
x = linspace(0, 10, 100)
fig, ax = subplots()
for n in range(4):
 ax.plot(x, jn(n, x), label=r"$J_{%d}(x)$" % n)
ax.legend();
```
4.3 Integration

4.3.1 Numerical integration: quadrature

Numerical evaluation of a function of the type
\[ \int_{a}^{b} f(x)\,dx \]

is called numerical quadrature, or simply quadature. SciPy provides a series of functions for different kind of quadrature, for example the `quad`, `dblquad` and `tplquad` for single, double and triple integrals, respectively.

The `quad` function takes a large number of optional arguments, which can be used to fine-tune the behaviour of the function (try `help(quad)` for details).

The basic usage is as follows:

```python
define a simple function for the integrand
def f(x):
 return x
```
In[10]:

```python
x_lower = 0 # the lower limit of x
x_upper = 1 # the upper limit of x

val, abserr = quad(f, x_lower, x_upper)
print "integral value =", val, ", absolute error =", abserr
```

```
integral value = 0.5 , absolute error = 5.55111512313e-15
```

If we need to pass extra arguments to integrand function we can use the `args` keyword argument:

In[11]:

```python
def integrand(x, n):
 """
 Bessel function of first kind and order n.
 """
 return jn(n, x)

x_lower = 0 # the lower limit of x
x_upper = 10 # the upper limit of x

val, abserr = quad(integrand, x_lower, x_upper, args=(3,))
print val, abserr
```

```
0.736675137081 9.38925687719e-13
```

For simple functions we can use a lambda function (name-less function) instead of explicitly defining a function for the integrand:

In[12]:

```python
val, abserr = quad(lambda x: exp(-x ** 2), -Inf, Inf)
print "numerical =", val, abserr
analytical = sqrt(pi)
print "analytical =", analytical
```

```
numerical = 1.77245385091 1.42026367809e-08
analytical = 1.77245385091
```

As show in the example above, we can also use ‘Inf’ or ‘-Inf’ as integral limits. Higher-dimensional integration works in the same way:

In[13]:

```python
def integrand(x, y):
 return exp(-x**2-y**2)

x_lower = 0
x_upper = 10
y_lower = 0
y_upper = 10

val, abserr = dblquad(integrand, x_lower, x_upper, lambda x : y_lower, lambda x: y_upper)
print val, abserr
```

```
0.785398163397 1.63822994214e-13
```

Note how we had to pass lambda functions for the limits for the y integration, since these in general can be functions of x.
4.4 Ordinary differential equations (ODEs)

SciPy provides two different ways to solve ODEs: An API based on the function `odeint`, and object-oriented API based on the class `ode`. Usually `odeint` is easier to get started with, but the `ode` class offers some finer level of control.

Here we will use the `odeint` functions. For more information about the class `ode`, try `help(ode)`. It does pretty much the same thing as `odeint`, but in an object-oriented fashion.

To use `odeint`, first import it from the `scipy.integrate` module.

```python
from scipy.integrate import odeint, ode
```

A system of ODEs are usually formulated on standard form before it is attacked numerically. The standard form is:

\[ y' = f(y, t) \]

where\[ y = [y_1(t), y_2(t), \ldots, y_n(t)] \]
and \( f \) is some function that gives the derivatives of the function \( y_i(t) \). To solve an ODE we need to know the function \( f \) and an initial condition, \( y(0) \).

Note that higher-order ODEs can always be written in this form by introducing new variables for the intermediate derivatives.

Once we have defined the Python function \( f \) and array \( y_0 \) (that is \( f \) and \( y(0) \) in the mathematical formulation), we can use the `odeint` function as:

\[ y_t = odeint(f, y_0, t) \]

where \( t \) is and array with time-coordinates for which to solve the ODE problem. \( y_t \) is an array with one row for each point in time in \( t \), where each column corresponds to a solution \( y_i(t) \) at that point in time.

We will see how we can implement \( f \) and \( y_0 \) in Python code in the examples below.

**Example: double pendulum** Let’s consider a physical example: The double compound pendulum, described in some detail here: http://en.wikipedia.org/wiki/Double_pendulum

The equations of motion of the pendulum are given on the wiki page:

\[
\begin{align*}
\dot{\theta}_1 &= \frac{6}{m^2} \left( \frac{2}{2} - 3\cos(\theta_1 - \theta_2) \right) \phi_3^2 - 3 \cos(\phi_1 - \phi_2) \\
\dot{\theta}_2 &= \frac{6}{m^2} \left( \frac{2}{2} - 3\cos(\theta_1 - \theta_2) \right) \phi_4^2 - 3 \cos(\phi_1 - \phi_2) \\
\dot{\phi}_1 &= -\frac{1}{2} m^2 \left( \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) + 3 \theta_1 \dot{\phi}_1 + 3 \dot{\phi}_1 \phi_1 \right) \\
\dot{\phi}_2 &= -\frac{1}{2} m^2 \left( -\dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) + 3 \theta_2 \dot{\phi}_2 + 3 \dot{\phi}_2 \phi_2 \right)
\end{align*}
\]

To make the Python code simpler to follow, let’s introduce new variable names and the vector notation:

\[ x = [\theta_1, \theta_2, \phi_1, \phi_2] \]

\[ \begin{align*}
\dot{x}_1 &= \frac{6}{m^2} \left( \frac{2}{2} - 3\cos(x_1 - x_2) \right) x_4 \\
\dot{x}_2 &= \frac{6}{m^2} \left( \frac{2}{2} - 3\cos(x_1 - x_2) \right) x_3 \\
\dot{x}_3 &= -\frac{1}{2} m^2 \left( \dot{x}_1 \dot{x}_2 \sin(x_1 - x_2) + 3 \theta_1 \dot{\phi}_1 + 3 \dot{\phi}_1 \phi_1 \right) \\
\dot{x}_4 &= -\frac{1}{2} m^2 \left( -\dot{x}_1 \dot{x}_2 \sin(x_1 - x_2) + 3 \theta_2 \dot{\phi}_2 + 3 \dot{\phi}_2 \phi_2 \right)
\end{align*} \]
\[ g = 9.82 \]
\[ L = 0.5 \]
\[ m = 0.1 \]

```python
def dx(x, t):
 """
The right-hand side of the pendulum ODE
 """
 x1, x2, x3, x4 = x[0], x[1], x[2], x[3]
 dx1 = 6.0/(m*L**2) * (2 * x3 - 3 * cos(x1-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
 dx2 = 6.0/(m*L**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
 dx3 = -0.5 * m * L**2 * (dx1 * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))
 dx4 = -0.5 * m * L**2 * (-dx1 * dx2 * sin(x1-x2) + (g/L) * sin(x2))
 return [dx1, dx2, dx3, dx4]
```

```python
In[94]:
 # choose an initial state
 x0 = [pi/4, pi/2, 0, 0]

In[95]:
 # time coordinate to solve the ODE for: from 0 to 10 seconds
 t = linspace(0, 10, 250)

In[96]:
 # solve the ODE problem
 x = odeint(dx, x0, t)

In[97]:
 # plot the angles as a function of time
 fig, axes = subplots(1,2, figsize=(12,4))
 axes[0].plot(t, x[:, 0], 'r', label="theta1")
 axes[0].plot(t, x[:, 1], 'b', label="theta2")
 x1 = + L * sin(x[:, 0])
 y1 = - L * cos(x[:, 0])
 x2 = x1 + L * sin(x[:, 1])
 y2 = y1 - L * cos(x[:, 1])
 axes[1].plot(x1, y1, 'r', label="pendulum1")
 axes[1].plot(x2, y2, 'b', label="pendulum2")
 axes[1].set_ylim([-1, 0])
 axes[1].set_xlim([1, -1])
```

Simple animation of the pendulum motion. We will see how to make better animation in Lecture 4.
Example: Damped harmonic oscillator

ODE problems are important in computational physics, so we will look at one more example: the damped harmonic oscillation. This problem is well described on the wiki page: http://en.wikipedia.org/wiki/Damping

The equation of motion for the damped oscillator is:

$$\frac{d^2x}{dt^2} + 2\zeta \omega_0 \frac{dx}{dt} + \omega_0^2 x = 0$$

where $x$ is the position of the oscillator, $\omega_0$ is the frequency, and $\zeta$ is the damping ratio. To write this second-order ODE on standard form we introduce $p = \frac{dx}{dt}$.
\[\frac{dp}{dt} = -2\zeta\omega_0 p - \omega_0^2 x\]
\[\frac{dx}{dt} = p\]

In the implementation of this example we will add extra arguments to the RHS function for the ODE, rather than using global variables as we did in the previous example. As a consequence of the extra arguments to the RHS, we need to pass an keyword argument \texttt{args} to the \texttt{odeint} function:

\begin{verbatim}
In[24]: def dy(y, t, zeta, w0):
    """
The right-hand side of the damped oscillator ODE
    """
    x, p = y[0], y[1]
    dx = p
    dp = -2 * zeta * w0 * p - w0**2 * x
    return [dx, dp]

In[25]: # initial state:
y0 = [1.0, 0.0]

In[26]: # time coordinate to solve the ODE for
t = linspace(0, 10, 1000)
w0 = 2*pi*1.0

In[27]: # solve the ODE problem for three different values of the damping ratio
    y1 = odeint(dy, y0, t, args=(0.0, w0)) # undamped
    y2 = odeint(dy, y0, t, args=(0.2, w0)) # under damped
    y3 = odeint(dy, y0, t, args=(1.0, w0)) # critical damping
    y4 = odeint(dy, y0, t, args=(5.0, w0)) # over damped

In[28]: fig, ax = subplots()
    ax.plot(t, y1[:,0], 'k', label="undamped", linewidth=0.25)
    ax.plot(t, y2[:,0], 'r', label="under damped")
    ax.plot(t, y3[:,0], 'b', label="critical damping")
    ax.plot(t, y4[:,0], 'g', label="over damped")
    ax.legend();
\end{verbatim}
4.5 Fourier transform

Fourier transforms are one of the universal tools in computational physics, which appear over and over again in different contexts. SciPy provides functions for accessing the classic FFTPACK library from NetLib, which is an efficient and well tested FFT library written in FORTRAN. The SciPy API has a few additional convenience functions, but overall the API is closely related to the original FORTRAN library.

To use the `fftpack` module in a python program, include it using:

```python
from scipy.fftpack import *
```

To demonstrate how to do a fast Fourier transform with SciPy, let’s look at the FFT of the solution to the damped oscillator from the previous section:

```python
N = len(t)
dt = t[1]-t[0]
calculate the fast fourier transform
y2 is the solution to the under-damped oscillator from the previous section
F = fft(y2[:,0])
calculate the frequencies for the components in F
w = fftfreq(N, dt)
```

```python
fig, ax = subplots(figsize=(9,3))
ax.plot(w, abs(F));
```
Since the signal is real, the spectrum is symmetric. We therefore only need to plot the part that corresponds to the positive frequencies. To extract that part of the $w$ and $F$ we can use some of the indexing tricks for NumPy arrays that we saw in Lecture 2:

```python
In[32]:
indices = where(w > 0) # select only indices for elements that corresponds to positive frequencies
w_pos = w[indices]
F_pos = F[indices]

In[33]:
fig, ax = subplots(figsize=(9,3))
ax.plot(w_pos, abs(F_pos))
ax.set_xlim(0, 5);
```

As expected, we now see a peak in the spectrum that is centered around 1, which is the frequency we used in the damped oscillator example.

### 4.6 Linear algebra

The linear algebra module contains a lot of matrix related functions, including linear equation solving, eigenvalue solvers, matrix functions (for example matrix-exponentiation), a number of different decompositions (SVD, LU, cholesky), etc.

Detailed documentation is available at: http://docs.scipy.org/doc/scipy/reference/linalg.html

Here we will look at how to use some of these functions:

#### 4.6.1 Linear equation systems

Linear equation systems on the matrix form
\[ Ax = b \]

where \( A \) is a matrix and \( x, b \) are vectors can be solved like:

```
In[34]:
A = array([[1,2,3], [4,5,6], [7,8,9]])
b = array([1,2,3])
```

```
In[35]:
x = solve(A, b)
x
```

```
Out[35]: array([-0.33333333, 0.66666667, 0.])
```

```
In[36]:
check
dot(A, x) - b
```

```
Out[36]: array([-1.11022302e-16, 0.00000000e+00, 0.00000000e+00])
```

We can also do the same with

\[ AX = B \]

where \( A, B, X \) are matrices:

```
In[37]:
A = rand(3,3)
B = rand(3,3)
```

```
In[38]:
X = solve(A, B)
```

```
In[39]:
X
```

```
Out[39]: array([[2.28587973, 5.88845235, 1.6750663],
[-4.88205838, -5.26531274, -1.37990347],
[1.75135926, -2.05969998, -0.09859636]])
```

```
In[40]:
check
norm(dot(A, X) - B)
```

```
Out[40]: 6.2803698347351007e-16
```

### 4.6.2 Eigenvalues and eigenvectors

The eigenvalue problem for a matrix \( A \):

\[ Av_n = \lambda_n v_n \]

where \( v_n \) is the \( n \)th eigenvector and \( \lambda_n \) is the \( n \)th eigenvalue.

To calculate eigenvalues of a matrix, use the `eigvals` and for calculating both eigenvalues and eigenvectors, use the function `eig`:

```
In[41]:
evals = eigvals(A)
```
The eigenvectors corresponding to the $n$th eigenvalue (stored in `evals[n]`) is the $n$th column in `evecs`, i.e., `evecs[:,n]`. To verify this, let’s try multiplying eigenvectors with the matrix and compare to the product of the eigenvector and the eigenvalue:

```
In[46]:
 n = 1
 norm(dot(A, evecs[:,n]) - evals[n] * evecs[:,n])
```

```
Out[46]: 1.3964254612015911e-16
```

There are also more specialized eigensolvers, like the `eigh` for Hermitian matrices.

### 4.6.3 Matrix operations

```
In[47]:
 # the matrix inverse
 inv(A)
```

```
Out[47]: array([[-1.38585633, 1.36837431, 6.03633364],
 [3.80855289, -4.76960426, -5.2571037],
 [0.0689213 , 2.4652602 , -2.5948838]])
```

```
In[48]:
 # determinant
 det(A)
```

```
Out[48]: 0.027341548212627968
```

```
In[49]:
 # norms of various orders
 norm(A, ord=2), norm(A, ord=Inf)
```

```
Out[49]: (1.1657807164173386, 1.7872032588446576)
```
4.6.4 Sparse matrices

Sparse matrices are often useful in numerical simulations dealing with large systems, if the problem can be described in matrix form where the matrices or vectors mostly contains zeros. Scipy has a good support for sparse matrices, with basic linear algebra operations (such as equation solving, eigenvalue calculations, etc).

There are many possible strategies for storing sparse matrices in an efficient way. Some of the most common are the so-called coordinate form (COO), list of list (LIL) form, and compressed-sparse column CSC (and row, CSR). Each format has some advantages and disadvantages. Most computational algorithms (equation solving, matrix-matrix multiplication, etc) can be efficiently implemented using CSR or CSC formats, but they are not so intuitive and not so easy to initialize. So often a sparse matrix is initially created in COO or LIL format (where we can efficiently add elements to the sparse matrix data), and then converted to CSC or CSR before used in real calculations.

For more information about these sparse formats, see e.g. http://en.wikipedia.org/wiki/Sparse

When we create a sparse matrix we have to choose which format it should be stored in. For example,

In[50]: from scipy.sparse import *

In[51]: # dense matrix
M = array([[1,0,0,0], [0,3,0,0], [0,1,1,0], [1,0,0,1]]); M

Out[51]: array([[1, 0, 0, 0],
[0, 3, 0, 0],
[0, 1, 1, 0],
[1, 0, 0, 1]])

In[52]: # convert from dense to sparse
A = csr_matrix(M); A

Out[52]: <4x4 sparse matrix of type '<type 'numpy.int64'>'
with 6 stored elements in Compressed Sparse Row format>

In[53]: # convert from sparse to dense
A.todense()

Out[53]: matrix([[1, 0, 0, 0],
[0, 3, 0, 0],
[0, 1, 1, 0],
[1, 0, 0, 1]])

More efficient way to create sparse matrices: create an empty matrix and populate with using matrix indexing (avoids creating a potentially large dense matrix)

In[54]: A = lil_matrix((4,4)) # empty 4x4 sparse matrix
A[0,0] = 1
A[1,1] = 3
A

Out[54]: <4x4 sparse matrix of type '<type 'numpy.float64'>'
with 6 stored elements in Linked List format>
Converting between different sparse matrix formats:

We can compute with sparse matrices like with dense matrices:
In[63]:  # sparse matrix - dense vector multiplication
A * v

Out[63]: array([[ 1.],
[ 6.],
[ 5.],
[ 5.]]

In[64]:  # same result with dense matrix - dense vector multiplication
A.todense() * v

Out[64]: matrix([[ 1.],
[ 6.],
[ 5.],
[ 5.]]

4.7 Optimization

Optimization (finding minima or maxima of a function) is a large field in mathematics, and optimization of complicated functions or in many variables can be rather involved. Here we will only look at a few very simple cases. For a more detailed introduction to optimization with SciPy see: http://scipy-lectures.github.com/advanced/mathematical_optimization/index.html

To use the optimization module in scipy first include the `optimize` module:

In[65]: from scipy import optimize

4.7.1 Finding a minima

Let’s first look at how to find the minima of a simple function of a single variable:

In[66]:
def f(x):
    return 4*x**3 + (x-2)**2 + x**4

In[67]: fig, ax = subplots()
   x = linspace(-5, 3, 100)
   ax.plot(x, f(x));
We can use the `fmin_bfgs` function to find the minima of a function:

```
In[68]: x_min = optimize.fmin_bfgs(f, -2)
x_min
```
Optimization terminated successfully.
Current function value: -3.506641
Iterations: 6
Function evaluations: 30
Gradient evaluations: 10
```
Out[68]: array([-2.67298167])
```

```
In[69]: optimize.fmin_bfgs(f, 0.5)
```
```
Out[69]: array([0.46961745])
```

We can also use the `brent` or `fminbound` functions. They have a bit different syntax and use different algorithms.

```
In[70]: optimize.brent(f)
```
```
Out[70]: 0.46961743402759754
```

```
In[71]: optimize.fminbound(f, -4, 2)
```

81
4.7.2 Finding a solution to a function

To find the root for a function of the form $f(x) = 0$ we can use the `fsolve` function. It requires an initial guess:

```python
omega_c = 3.0
def f(omega):
 # a transcendental equation: resonance frequencies of a low-Q SQUID terminated microwave resonator
 return tan(2*pi*omega) - omega_c/omega

optimize.fsolve(f, 0.1)
```

Out[105]: array([ 0.23743014])

```python
optimize.fsolve(f, 0.6)
```

Out[108]: array([ 0.71286972])

```python
optimize.fsolve(f, 1.1)
```

Out[107]: array([ 1.18990285])
4.8 Interpolation

Interpolation is simple and convenient in scipy: The `interp1d` function, when given arrays describing X and Y data, returns and object that behaves like a function that can be called for an arbitrary value of x (in the range covered by X), and it returns the corresponding interpolated y value:

```python
In[110]: from scipy.interpolate import *

In[111]: def f(x):
 return sin(x)

In[112]: n = arange(0, 10)
x = linspace(0, 9, 100)
y_meas = f(n) + 0.1 * randn(len(n)) # simulate measurement with noise
y_real = f(x)
linear_interpolation = interp1d(n, y_meas)
y_interpl = linear_interpolation(x)
cubic_interpolation = interp1d(n, y_meas, kind='cubic')
y_interp2 = cubic_interpolation(x)
```

```python
In[114]: fig, ax = subplots(figsize=(10,4))
ax.plot(n, y_meas, 'bs', label='noisy data')
ax.plot(x, y_real, 'k', lw=2, label='true function')
ax.plot(x, y_interp1, 'r', label='linear interp')
ax.plot(x, y_interp2, 'g', label='cubic interp')
ax.legend(loc=3);
```

4.9 Statistics

The `scipy.stats` module contains a large number of statistical distributions, statistical functions and tests. For a complete documentation of its features, see http://docs.scipy.org/doc/scipy/reference/stats.html. There is also a very powerful python package for statistical modelling called statsmodels. See http://statsmodels.sourceforge.net for more details.
In[81]: from scipy import stats

In[82]: # create a (discreet) random variable with poissionian distribution
    X = stats.poisson(3.5) # photon distribution for a coherent state with n=3.5 photons

In[83]: n = arange(0,15)
    fig, axes = subplots(3,1, sharex=True)
    # plot the probability mass function (PMF)
    axes[0].step(n, X.pmf(n))
    # plot the cumulative distribution function (CDF)
    axes[1].step(n, X.cdf(n))
    # plot histogram of 1000 random realizations of the stochastic variable X
    axes[2].hist(X.rvs(size=1000));

In[84]: # create a (continous) random variable with normal distribution
    Y = stats.norm()

In[85]: x = linspace(-5,5,100)
    fig, axes = subplots(3,1, sharex=True)
    # plot the probability distribution function (PDF)
    axes[0].plot(x, Y.pdf(x))
# plot the cumulative distribution function (CDF)
axes[1].plot(x, Y.cdf(x));

# plot histogram of 1000 random realizations of the stochastic variable Y
axes[2].hist(Y.rvs(size=1000), bins=50);

Statistics:

In[86]:
```
X.mean(), X.std(), X.var() # poission distribution
```

Out[86]: (3.5, 1.8708286933869707, 3.5)

In[87]:
```
Y.mean(), Y.std(), Y.var() # normal distribution
```

Out[87]: (0.0, 1.0, 1.0)

## 4.9.1 Statistical tests

Test if two sets of (independent) random data comes from the same distribution:

In[88]:
```
t_statistic, p_value = stats.ttest_ind(X.rvs(size=1000), X.rvs(size=1000))
print "t-statistic =", t_statistic
print "p-value =", p_value
```

```
t-statistic = -0.244622880865
p-value = 0.806773564698
```

Since the p value is very large we cannot reject the hypothesis that the two sets of random data have different means.

To test if the mean of a single sample of data has mean 0.1 (the true mean is 0.0):
In[89]: \texttt{stats.ttest_1samp(Y.rvs(size=1000), 0.1)}

Out[89]: (-4.4661322772225356, 8.8726783620609218e-06)

Low p-value means that we can reject the hypothesis that the mean of Y is 0.1.

In[90]: \texttt{Y.mean()}

Out[90]: 0.0

In[91]: \texttt{stats.ttest_1samp(Y.rvs(size=1000), Y.mean())}

Out[91]: (0.51679431628006112, 0.60541413382728715)

4.10 Further reading


4.11 Versions

In[3]: \texttt{%reload_ext version_information}

\texttt{%version_information numpy, scipy}

Out[3]:
Chapter 5

matplotlib - 2D and 3D plotting in Python

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.
The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

In[1]: # This line configures matplotlib to show figures embedded in the notebook,
# instead of opening a new window for each figure. More about that later.
# If you are using an old version of IPython, try using '%pylab inline' instead.
%matplotlib inline

5.1 Introduction

Matplotlib is an excellent 2D and 3D graphics library for generating scientific figures. Some of the many advantages of this library include:

- Easy to get started
- Support for LaTeX formatted labels and texts
- Great control of every element in a figure, including figure size and DPI.
- High-quality output in many formats, including PNG, PDF, SVG, EPS, and PGF.
- GUI for interactively exploring figures and support for headless generation of figure files (useful for batch jobs).

One of the of the key features of matplotlib that I would like to emphasize, and that I think makes matplotlib highly suitable for generating figures for scientific publications is that all aspects of the figure can be controlled programmatically. This is important for reproducibility and convenient when one needs to regenerate the figure with updated data or change its appearance.

More information at the Matplotlib web page: http://matplotlib.org/

To get started using Matplotlib in a Python program, either include the symbols from the `pylab` module (the easy way):

In[2]: from pylab import *

or import the `matplotlib.pyplot` module under the name `plt` (the tidy way):
5.2 MATLAB-like API

The easiest way to get started with plotting using matplotlib is often to use the MATLAB-like API provided by matplotlib.

It is designed to be compatible with MATLAB’s plotting functions, so it is easy to get started with if you are familiar with MATLAB.

To use this API from matplotlib, we need to include the symbols in the `pylab` module:

```python
In[4]: from pylab import *
```

5.2.1 Example

A simple figure with MATLAB-like plotting API:

```python
In[5]: x = linspace(0, 5, 10)
y = x ** 2
```

```python
In[6]: figure()
 plot(x, y, 'r')
 xlabel('x')
 ylabel('y')
 title('title')
 show()
```

Most of the plotting related functions in MATLAB are covered by the `pylab` module. For example, subplot and color/symbol selection:
The good thing about the pylab MATLAB-style API is that it is easy to get started with if you are familiar with MATLAB, and it has a minimum of coding overhead for simple plots.

However, I’d encourage not using the MATLAB compatible API for anything but the simplest figures. Instead, I recommend learning and using matplotlib’s object-oriented plotting API. It is remarkably powerful. For advanced figures with subplots, insets and other components it is very nice to work with.

5.3 The matplotlib object-oriented API

The main idea with object-oriented programming is to have objects that one can apply functions and actions on, and no object or program states should be global (such as the MATLAB-like API). The real advantage of this approach becomes apparent when more than one figure is created, or when a figure contains more than one subplot.

To use the object-oriented API we start out very much like in the previous example, but instead of creating a new global figure instance we store a reference to the newly created figure instance in the fig variable, and from it we create a new axis instance axes using the add_axes method in the Figure class instance fig:

```python
In[8]: fig = plt.figure()
axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)
axes.plot(x, y, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title');
```
Although a little bit more code is involved, the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure:

```
In[9]: fig = plt.figure()

axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes
axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes

main figure
axes1.plot(x, y, 'r')
axes1.set_xlabel('x')
axes1.set_ylabel('y')
axes1.set_title('title')

insert
axes2.plot(y, x, 'g')
axes2.set_xlabel('y')
axes2.set_ylabel('x')
axes2.set_title('insert title');
```
If we don’t care about being explicit about where our plot axes are placed in the figure canvas, then we can use one of the many axis layout managers in matplotlib. My favorite is `subplots`, which can be used like this:

```
In[10]: fig, axes = plt.subplots()
axes.plot(x, y, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title');
```
In[11]: fig, axes = plt.subplots(nrows=1, ncols=2)
    
    for ax in axes:
        ax.plot(x, y, 'r')
        ax.set_xlabel('x')
        ax.set_ylabel('y')
        ax.set_title('title')
That was easy, but it isn’t so pretty with overlapping figure axes and labels, right?

We can deal with that by using the `fig.tight_layout` method, which automatically adjusts the positions of the axes on the figure canvas so that there is no overlapping content:

```python
In[12]: fig, axes = plt.subplots(nrows=1, ncols=2)
for ax in axes:
 ax.plot(x, y, 'r')
 ax.set_xlabel('x')
 ax.set_ylabel('y')
 ax.set_title('title')
fig.tight_layout()
```
5.3.1 Figure size, aspect ratio and DPI

Matplotlib allows the aspect ratio, DPI and figure size to be specified when the Figure object is created, using the figsize and dpi keyword arguments. figsize is a tuple of the width and height of the figure in inches, and dpi is the dots-per-inch (pixel per inch). To create an 800x400 pixel, 100 dots-per-inch figure, we can do:

```
In[13]: fig = plt.figure(figsize=(8,4), dpi=100)
<matplotlib.figure.Figure at 0x4cbd390>
```

The same arguments can also be passed to layout managers, such as the subplots function:

```
In[14]: fig, axes = plt.subplots(figsize=(12,3))
axes.plot(x, y, 'r')
axes.set_xlabel('x')
axes.set_ylabel('y')
axes.set_title('title');
```
5.3.2 Saving figures

To save a figure to a file we can use the `savefig` method in the `Figure` class:

```python
In[15]: fig.savefig("filename.png")
```

Here we can also optionally specify the DPI and choose between different output formats:

```python
In[16]: fig.savefig("filename.png", dpi=200)
```

What formats are available and which ones should be used for best quality?

Matplotlib can generate high-quality output in a number of formats, including PNG, JPG, EPS, SVG, PGF and PDF. For scientific papers, I recommend using PDF whenever possible. (LaTeX documents compiled with `pdflatex` can include PDFs using the `includegraphics` command). In some cases, PGF can also be a good alternative.

5.3.3 Legends, labels and titles

Now that we have covered the basics of how to create a figure canvas and add axes instances to the canvas, let’s look at how to decorate a figure with titles, axis labels, and legends.

**Figure titles**

A title can be added to each axis instance in a figure. To set the title, use the `set_title` method in the axes instance:

```python
In[17]: ax.set_title("title");
```

**Axis labels**

Similarly, with the methods `set_xlabel` and `set_ylabel`, we can set the labels of the X and Y axes:

```python
In[18]: ax.set_xlabel("x")
ax.set_ylabel("y");
```

**Legends**

Legends for curves in a figure can be added in two ways. One method is to use the `legend` method of the axis object and pass a list/tuple of legend texts for the previously defined curves:

```python
In[19]: ax.legend(["curve1", "curve2", "curve3"]);
```

The method described above follows the MATLAB API. It is somewhat prone to errors and unflexible if curves are added to or removed from the figure (resulting in a wrongly labelled curve).

A better method is to use the `label="label text"` keyword argument when plots or other objects are added to the figure, and then using the `legend` method without arguments to add the legend to the figure:

```python
In[20]: ax.plot(x, x**2, label="curve1")
ax.plot(x, x**3, label="curve2")
ax.legend();
```

The advantage with this method is that if curves are added or removed from the figure, the legend is automatically updated accordingly.

The `legend` function takes an optional keyword argument `loc` that can be used to specify where in the figure the legend is to be drawn. The allowed values of `loc` are numerical codes for the various places the legend can be drawn. See http://matplotlib.org/users/legend_guide.html#legend-location for details. Some of the most common `loc` values are:
5.3.4 Formatting text: LaTeX, fontsize, font family

The figure above is functional, but it does not (yet) satisfy the criteria for a figure used in a publication. First and foremost, we need to have LaTeX formatted text, and second, we need to be able to adjust the font size to appear right in a publication.

Matplotlib has great support for LaTeX. All we need to do is to use dollar signs encapsulate LaTeX in any text (legend, title, label, etc.). For example, \$y=x^3\$.

But here we can run into a slightly subtle problem with LaTeX code and Python text strings. In LaTeX, we frequently use the backslash in commands, for example \alpha to produce the symbol $\alpha$. But the backslash already has a meaning in Python strings (the escape code character). To avoid Python messing
up our latex code, we need to use “raw” text strings. Raw text strings are prepended with an ‘r’, like \alpha or 'alpha' instead of "\alpha" or ’\alpha’:

```python
In[23]: fig, ax = plt.subplots()
 ax.plot(x, x**2, label=r"$y = \alpha^2$")
 ax.plot(x, x**3, label=r"$y = \alpha^3$")
 ax.legend(loc=2) # upper left corner
 ax.set_xlabel(r'α', fontsize=18)
 ax.set_ylabel(r'y', fontsize=18)
 ax.set_title('title');
```

We can also change the global font size and font family, which applies to all text elements in a figure (tick labels, axis labels and titles, legends, etc.):

```python
In[24]: # Update the matplotlib configuration parameters:
 matplotlib.rcParams.update({'font.size': 18, 'font.family': 'serif'})

In[25]: fig, ax = plt.subplots()
 ax.plot(x, x**2, label=r"$y = \alpha^2$")
 ax.plot(x, x**3, label=r"$y = \alpha^3$")
 ax.legend(loc=2) # upper left corner
 ax.set_xlabel(r'α')
 ax.set_ylabel(r'y')
 ax.set_title('title');
```

97
A good choice of global fonts are the STIX fonts:

```python
In[26]:
 # Update the matplotlib configuration parameters:
 matplotlib.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})

In[27]:
 fig, ax = plt.subplots()
 ax.plot(x, x**2, label=r"y = α^2")
 ax.plot(x, x**3, label=r"y = α^3")
 ax.legend(loc=2) # upper left corner
 ax.set_xlabel(r'α')
 ax.set_ylabel(r'y')
 ax.set_title('title');
```
Or, alternatively, we can request that matplotlib uses LaTeX to render the text elements in the figure:

```python
In[28]: matplotlib.rcParams.update({'font.size': 18, 'text.usetex': True})

In[29]: fig, ax = plt.subplots()
 ...
 ...
 ax.plot(x, x**2, label=r"$y = \alpha^2$"
 ax.plot(x, x**3, label=r"$y = \alpha^3$")
 ax.legend(loc=2) # upper left corner
 ax.set_xlabel(r'α')
 ax.set_ylabel(r'y')
 ax.set_title('title');
```
5.3.5 Setting colors, linewidths, linetypes

Colors

With matplotlib, we can define the colors of lines and other graphical elements in a number of ways. First of all, we can use the MATLAB-like syntax where 'b' means blue, 'g' means green, etc. The MATLAB API for selecting line styles are also supported: where, for example, 'b.' means a blue line with dots:

```
In[31]: # MATLAB style line color and style
 ax.plot(x, x**2, 'b.-') # blue line with dots
 ax.plot(x, x**3, 'g--') # green dashed line
```

```
Out[31]: [<matplotlib.lines.Line2D at 0x4985810>]
```

We can also define colors by their names or RGB hex codes and optionally provide an alpha value using the color and alpha keyword arguments:

```
In[32]: fig, ax = plt.subplots()
 ax.plot(x, x+1, color="red", alpha=0.5) # half-transparent red
 ax.plot(x, x+2, color="#1155dd") # RGB hex code for a bluish color
 ax.plot(x, x+3, color="#15cc55") # RGB hex code for a greenish color
```

```
In[30]: # restore
 matplotlib.rcParams.update({'font.size': 12, 'font.family': 'sans', 'text.usetex': False})
```
Line and marker styles

To change the line width, we can use the linewidth or lw keyword argument. The line style can be selected using the linestyle or ls keyword arguments:

```python
In[33]: fig, ax = plt.subplots(figsize=(12,6))
ax.plot(x, x+1, color="blue", linewidth=0.25)
ax.plot(x, x+2, color="blue", linewidth=0.50)
ax.plot(x, x+3, color="blue", linewidth=1.00)
ax.plot(x, x+4, color="blue", linewidth=2.00)

possible linestyle options '-', '{', '-.', ':', 'steps'
ax.plot(x, x+5, color="red", lw=2, linestyle='-')
ax.plot(x, x+6, color="red", lw=2, ls='--')
ax.plot(x, x+7, color="red", lw=2, ls=':')

custom dash
line, = ax.plot(x, x+8, color="black", lw=1.50)
line.set_dashes([5, 10, 15, 10]) # format: line length, space length, ...

possible marker symbols: marker = '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4', ...
ax.plot(x, x+9, color="green", lw=2, ls='*', marker='+')
ax.plot(x, x+10, color="green", lw=2, ls='*', marker='o')
ax.plot(x, x+11, color="green", lw=2, ls='*', marker='s')
ax.plot(x, x+12, color="green", lw=2, ls='*', marker='1')

marker size and color
ax.plot(x, x+13, color="purple", lw=1, ls='--', marker='o', markersize=2)
ax.plot(x, x+14, color="purple", lw=1, ls='--', marker='o', markersize=4)
ax.plot(x, x+15, color="purple", lw=1, ls='--', marker='o', markersize=8, markerfacecolor="red")
ax.plot(x, x+16, color="purple", lw=1, ls='--', marker='o', markersize=8, markerfacecolor="yellow", markeredgewidth=2, markeredgewidthcolor="blue"abhängigkeit von der Spalte 101
5.3.6 Control over axis appearance

The appearance of the axes is an important aspect of a figure that we often need to modify to make a publication quality graphics. We need to be able to control where the ticks and labels are placed, modify the font size and possibly the labels used on the axes. In this section we will look at controlling those properties in a matplotlib figure.

Plot range

The first thing we might want to configure is the ranges of the axes. We can do this using the `set_xlim` and `set_ylim` methods in the axis object, or `axis('tight')` for automatically getting “tightly fitted” axes ranges:

```python
In[34]: fig, axes = plt.subplots(1, 3, figsize=(12, 4))

axes[0].plot(x, x**2, x, x**3)
axes[0].set_title("default axes ranges")

axes[1].plot(x, x**2, x, x**3)
axes[1].axis('tight')
axes[1].set_title("tight axes")

axes[2].plot(x, x**2, x, x**3)
axes[2].set_ylim([0, 60])
axes[2].set_xlim([2, 5])
axes[2].set_title("custom axes range")
```

![Plot range example](image-url)
Logarithmic scale

It is also possible to set a logarithmic scale for one or both axes. This functionality is in fact only one application of a more general transformation system in Matplotlib. Each of the axes’ scales are set separately using set_xscale and set_yscale methods which accept one parameter (with the value “log” in this case):

```python
fig, axes = plt.subplots(1, 2, figsize=(10,4))
axes[0].plot(x, x**2, x, exp(x))
axes[0].set_title("Normal scale")
axes[1].plot(x, x**2, x, exp(x))
axes[1].set_yscale("log")
axes[1].set_title("Logarithmic scale (y)")
```

5.3.7 Placement of ticks and custom tick labels

We can explicitly determine where we want the axis ticks with set_xticks and set_yticks, which both take a list of values for where on the axis the ticks are to be placed. We can also use the set_xticklabels and set_yticklabels methods to provide a list of custom text labels for each tick location:

```python
In[36]:
```
fig, ax = plt.subplots(figsize=(10, 4))

ax.plot(x, x**2, x, x**3, lw=2)

ax.set_xticks([1, 2, 3, 4, 5])
ax.set_xticklabels([r'α', r'β', r'γ', r'δ', r'ϵ'], fontsize=18)

yticks = [0, 50, 100, 150]
ax.set_yticks(yticks)
ax.set_yticklabels(['%.1f' % y for y in yticks], fontsize=18); # use LaTeX formatted labels

There are a number of more advanced methods for controlling major and minor tick placement in matplotlib figures, such as automatic placement according to different policies. See http://matplotlib.org/api/ticker_api.html for details.

Scientific notation

With large numbers on axes, it is often better use scientific notation:

```python
fig, ax = plt.subplots(1, 1)
ax.plot(x, x**2, x, exp(x))
ax.set_title("scientific notation")
ax.set_yticks([0, 50, 100, 150])

from matplotlib import ticker
formatter = ticker.ScalarFormatter(useMathText=True)
formatter.set_scientific(True)
formatter.set_powerlimits((-1,1))
ax.yaxis.set_major_formatter(formatter)
```
5.3.8 Axis number and axis label spacing

```python
# distance between x and y axis and the numbers on the axes
rcParams['xtick.major.pad'] = 5
rcParams['ytick.major.pad'] = 5

fig, ax = plt.subplots(1, 1)

ax.plot(x, x**2, x, exp(x))
ax.set_yticks([0, 50, 100, 150])

ax.xaxis.labelpad = 5
ax.yaxis.labelpad = 5

ax.set_xlabel("x")
ax.set_ylabel("y");
```
Axis position adjustments

Unfortunately, when saving figures the labels are sometimes clipped, and it can be necessary to adjust the positions of axes a little bit. This can be done using `subplots_adjust`:

```python
In[40]:  fig, ax = plt.subplots(1, 1)
    ax.plot(x, x**2, x, exp(x))
    ax.set_yticks([0, 50, 100, 150])
    ax.set_title("title")
    ax.set_xlabel("x")
    ax.set_ylabel("y")
    fig.subplots_adjust(left=0.15, right=.9, bottom=0.1, top=0.9);
```
5.3.9 Axis grid

With the grid method in the axis object, we can turn on and off grid lines. We can also customize the appearance of the grid lines using the same keyword arguments as the plot function:

```python
In[41]: fig, axes = plt.subplots(1, 2, figsize=(10,3))

# default grid appearance
axes[0].plot(x, x**2, x, x**3, lw=2)
axes[0].grid(True)

# custom grid appearance
axes[1].plot(x, x**2, x, x**3, lw=2)
axes[1].grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5)
```
5.3.10 Axis spines

We can also change the properties of axis spines:

```python
In[42]: fig, ax = plt.subplots(figsize=(6, 2))
ax.spines['bottom'].set_color('blue')
ax.spines['top'].set_color('blue')
ax.spines['left'].set_color('red')
ax.spines['left'].set_linewidth(2)
# turn off axis spine to the right
ax.spines['right'].set_color('none')
ax.yaxis.tick_left()  # only ticks on the left side
```

![Graph showing changes to axis spines]

5.3.11 Twin axes

Sometimes it is useful to have dual x or y axes in a figure; for example, when plotting curves with different units together. Matplotlib supports this with the `twinx` and `twiny` functions:

```python
In[43]: fig, ax1 = plt.subplots()
ax1.plot(x, x**2, lw=2, color="blue")
ax1.set_ylabel(r"area $(m^2)$", fontsize=18, color="blue")
for label in ax1.get_yticklabels():
    label.set_color("blue")
ax2 = ax1.twinx()
ax2.plot(x, x**3, lw=2, color="red")
ax2.set_ylabel(r"volume $(m^3)$", fontsize=18, color="red")
for label in ax2.get_yticklabels():
    label.set_color("red")
```

![Graph showing twin axes]
5.3.12 Axes where x and y is zero

In[44]: fig, ax = plt.subplots()

ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0)) # set position of x spine to x=0

ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0)) # set position of y spine to y=0

xx = np.linspace(-0.75, 1., 100)
ax.plot(xx, xx**3);
5.3.13 Other 2D plot styles

In addition to the regular plot method, there are a number of other functions for generating different kind of plots. See the matplotlib plot gallery for a complete list of available plot types: http://matplotlib.org/gallery.html. Some of the more useful ones are show below:

In[45]: n = array([0,1,2,3,4,5])

In[46]: fig, axes = plt.subplots(1, 4, figsize=(12,3))
axes[0].scatter(xx, xx + 0.25*randn(len(xx)))
axes[0].set_title("scatter")

axes[1].step(n, n**2, lw=2)
axes[1].set_title("step")

axes[2].bar(n, n**2, align="center", width=0.5, alpha=0.5)
axes[2].set_title("bar")

axes[3].fill_between(x, x**2, x**3, color="green", alpha=0.5);
axes[3].set_title("fill_between");
In[47]: # polar plot using add_aces and polar projection
 fig = plt.figure()
 ax = fig.add_axes([0.0, 0.0, .6, .6], polar=True)
 t = linspace(0, 2 * pi, 100)
 ax.plot(t, t, color='blue', lw=3);

In[48]: # A histogram
 n = np.random.randn(100000)
 fig, axes = plt.subplots(1, 2, figsize=(12,4))
 axes[0].hist(n)
 axes[0].set_title("Default histogram")
 axes[0].set_xlim((min(n), max(n)))
 axes[1].hist(n, cumulative=True, bins=50)
 axes[1].set_title("Cumulative detailed histogram")
 axes[1].set_xlim((min(n), max(n)));
5.3.14 Text annotation

Annotating text in matplotlib figures can be done using the `text` function. It supports LaTeX formatting just like axis label texts and titles:

```
In[49]: fig, ax = plt.subplots()
ax.plot(xx, xx**2, xx, xx**3)
ax.text(0.15, 0.2, r'$y=x^2$', fontsize=20, color='blue')
ax.text(0.65, 0.1, r'$y=x^3$', fontsize=20, color='green');
```

5.3.15 Figures with multiple subplots and insets

Axes can be added to a matplotlib Figure canvas manually using `fig.add_axes` or using a sub-figure layout manager such as `subplots`, `subplot2grid`, or `gridspec`:
subplots

In[50]: fig, ax = plt.subplots(2, 3)
fig.tight_layout()

subplot2grid

In[51]: fig = plt.figure()
ax1 = plt.subplot2grid((3,3), (0,0), colspan=3)
ax2 = plt.subplot2grid((3,3), (1,0), colspan=2)
ax3 = plt.subplot2grid((3,3), (1,2), rowspan=2)
ax4 = plt.subplot2grid((3,3), (2,0))
ax5 = plt.subplot2grid((3,3), (2,1))
fig.tight_layout()
```python
import matplotlib.gridspec as gridspec

fig = plt.figure()
gs = gridspec.GridSpec(2, 3, height_ratios=[2, 1], width_ratios=[1, 2, 1])
for g in gs:
    ax = fig.add_subplot(g)
fig.tight_layout()
```
add_axes

Manually adding axes with `add_axes` is useful for adding insets to figures:

```python
In[54]:
fig, ax = plt.subplots()
ax.plot(xx, xx**2, xx, xx**3)
fig.tight_layout()

# inset
inset_ax = fig.add_axes([0.2, 0.55, 0.35, 0.35])  # X, Y, width, height

inset_ax.plot(xx, xx**2, xx, xx**3)
inset_ax.set_title('zoom near origin')

# set axis range
inset_ax.set_xlim(-.2, .2)
inset_ax.set_ylim(-.005, .01)

# set axis tick locations
inset_ax.set_yticks([0, 0.005, 0.01])
inset_ax.set_xticks([-0.1, 0, .1]);
```
5.3.16 Colormap and contour figures

Colormaps and contour figures are useful for plotting functions of two variables. In most of these functions we will use a colormap to encode one dimension of the data. There are a number of predefined colormaps. It is relatively straightforward to define custom colormaps. For a list of pre-defined colormaps, see: http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps

In[55]:
alpha = 0.7
phi_ext = 2 * pi * 0.5
def flux_qubit_potential(phi_m, phi_p):
 return 2 + alpha - 2 * cos(phi_p)*cos(phi_m) - alpha * cos(phi_ext - 2*phi_p)

In[56]:
phi_m = linspace(0, 2*pi, 100)
phi_p = linspace(0, 2*pi, 100)
X,Y = meshgrid(phi_p, phi_m)
Z = flux_qubit_potential(X, Y).T

pcolor

In[57]:
fig, ax = plt.subplots()
p = ax.pcolor(X/(2*pi), Y/(2*pi), Z, cmap=cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max())
cb = fig.colorbar(p, ax=ax)
`imshow`

```python
In[58]: fig, ax = plt.subplots()

im = ax.imshow(Z, cmap=cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])
im.set_interpolation('bilinear')

cb = fig.colorbar(im, ax=ax)
```
In[59]: fig, ax = plt.subplots()
cnt = ax.contour(Z, cmap=cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1])
5.4 3D figures

To use 3D graphics in matplotlib, we first need to create an instance of the Axes3D class. 3D axes can be added to a matplotlib figure canvas in exactly the same way as 2D axes; or, more conveniently, by passing a projection=’3d’ keyword argument to the add_axes or add_subplot methods.

In[]: from mpl_toolkits.mplot3d.axes3d import Axes3D

Surface plots

In[61]: fig = plt.figure(figsize=(14,6))

ax = fig.add_subplot(1, 2, 1, projection='3d')
p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0)

ax = fig.add_subplot(1, 2, 2, projection='3d')
p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)

Wire-frame plot

In[62]: fig = plt.figure(figsize=(8,6))

ax = fig.add_subplot(1, 1, 1, projection='3d')
p = ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4)
Coutour plots with projections

In[63]:
fig = plt.figure(figsize=(8,6))
ax = fig.add_subplot(1,1,1, projection='3d')
ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
cset = ax.contour(X, Y, Z, zdir='z', offset=-pi, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-pi, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=3*pi, cmap=cm.coolwarm)
ax.set_xlim3d(-pi, 2*pi);
ax.set_ylim3d(0, 3*pi);
ax.set_zlim3d(-pi, 2*pi);
Change the view angle

We can change the perspective of a 3D plot using the `view_init` method, which takes two arguments: elevation and azimuth angle (in degrees):

```
In[64]:  fig = plt.figure(figsize=(12,6))
        ax = fig.add_subplot(1,2,1, projection='3d')
        ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
        ax.view_init(30, 45)
        ax = fig.add_subplot(1,2,2, projection='3d')
        ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25)
        ax.view_init(70, 30)
        fig.tight_layout()
```
5.4.1 Animations

Matplotlib also includes a simple API for generating animations for sequences of figures. With the *FuncAnimation* function we can generate a movie file from sequences of figures. The function takes the following arguments: *fig*, a figure canvas, *func*, a function that we provide which updates the figure, *init_func*, a function we provide to setup the figure, *frame*, the number of frames to generate, and *blit*, which tells the animation function to only update parts of the frame which have changed (for smoother animations):

```python
def init():
    # setup figure

def update(frame_counter):
    # update figure for new frame

anim = animation.FuncAnimation(fig, update, init_func=init, frames=200, blit=True)

anim.save('animation.mp4', fps=30)  # fps = frames per second
```

To use the animation features in matplotlib we first need to import the module *matplotlib.animation*:

```python
from matplotlib import animation
```

```python
from scipy.integrate import odeint

g = 9.82; L = 0.5; m = 0.1

def dx(x, t):
    x1, x2, x3, x4 = x[0], x[1], x[2], x[3]
    dx1 = 6.0/(m*L**2) * (2 * x3 - 3 * cos(x1-x2) * x4)/(16 - 9 * cos(x1-x2)**2)
    dx2 = 6.0/(m*L**2) * (8 * x4 - 3 * cos(x1-x2) * x3)/(16 - 9 * cos(x1-x2)**2)
    dx3 = -0.5 * m * L**2 * ( dx1 * dx2 * sin(x1-x2) + 3 * (g/L) * sin(x1))
    dx4 = -0.5 * m * L**2 * (-dx1 * dx2 * sin(x1-x2) + (g/L) * sin(x2))

    return [dx1, dx2, dx3, dx4]
```
\[x_0 = [\pi/2, \pi/2, 0, 0] \quad \# \text{initial state} \\
\]
\[t = \text{linspace}(0, 10, 250) \quad \# \text{time coordinates} \\
\]
\[x = \text{odeint}(dx, x_0, t) \quad \# \text{solve the ODE problem} \\
\]

Generate an animation that shows the positions of the pendulums as a function of time:

In[67]: fig, ax = plt.subplots(figsize=(5,5))

ax.set_ym limits([-1.5, 0.5])
ax.set_xlim([1, -1])

pendulum1, = ax.plot([], [], color="red", lw=2)
pendulum2, = ax.plot([], [], color="blue", lw=2)

def init():
 pendulum1.set_data([], [])
 pendulum2.set_data([], [])

def update(n):
 # n = frame counter
 # calculate the positions of the pendulums
 x1 = - L * \sin(x[n, 0])
 y1 = - L * \cos(x[n, 0])
 x2 = x1 + L * \sin(x[n, 1])
 y2 = y1 - L * \cos(x[n, 1])

 # update the line data
 pendulum1.set_data([0, x1], [0, y1])
 pendulum2.set_data([x1,x2], [y1,y2])

anim = animation.FuncAnimation(fig, update, init_func=init, frames=len(t), blit=True)

anim.save can be called in a few different ways, some which might or might not work
on different platforms and with different versions of matplotlib and video encoders
anim.save('animation.mp4', fps=20, extra_args=['-vcodec', 'libx264'], writer=animation.FFMpegWriter())
anim.save('animation.mp4', fps=20, extra_args=['-vcodec', 'libx264'])
anim.save('animation.mp4', fps=20, writer="ffmpeg", codec="libx264")
anim.save('animation.mp4', fps=20, writer="avconv", codec="libx264")

plt.close(fig)

Note: To generate the movie file we need to have either ffmpeg or avconv installed. Install it on Ubuntu using:

$ sudo apt-get install ffmpeg

or (newer versions)

$ sudo apt-get install libav-tools

On MacOSX, try:

$ sudo port install ffmpeg

In[68]: from IPython.display import HTML
video = open("animation.mp4", "rb").read()
video_encoded = video.encode("base64")
video_tag = '<video controls alt="test" src="data:video/x-m4v;base64,{}">'.format(video_encoded)
HTML(video_tag)

Out[68]: <IPython.core.display.HTML at 0x7ca5a90>
5.4.2 Backends

Matplotlib has a number of “backends” which are responsible for rendering graphs. The different backends are able to generate graphics with different formats and display/event loops. There is a distinction between noninteractive backends (such as ‘agg’, ‘svg’, ‘pdf’, etc.) that are only used to generate image files (e.g. with the `savefig` function), and interactive backends (such as Qt4Agg, GTK, MacOSX) that can display a GUI window for interactively exploring figures.

A list of available backends are:

```
In[69]: print(matplotlib.rcsetup.all_backends)
```

['GTK', 'GTKAgg', 'GTKCairo', 'MacOSX', 'Qt4Agg', 'TkAgg', 'WX', 'WXAgg', 'CocoaAgg', 'GTK3Cairo', 'GTK3Agg', 'WebAgg', 'agg', 'cairo', 'emf', 'gdk', 'pdf', 'pgf', 'ps', 'svg', 'template']

The default backend, called `agg`, is based on a library for raster graphics which is great for generating raster formats like PNG.

Normally we don’t need to bother with changing the default backend; but sometimes it can be useful to switch to, for example, PDF or GTKCairo (if you are using Linux) to produce high-quality vector graphics instead of raster based graphics.

Generating SVG with the `svg` backend

```
In[1]:
# RESTART THE NOTEBOOK: the matplotlib backend can only be selected before pylab is imported!
# (e.g. Kernel > Restart)
#
import matplotlib
matplotlib.use('svg')
import matplotlib.pylab as plt
import numpy
from IPython.display import Image, SVG

In[2]:
# Now we are using the svg backend to produce SVG vector graphics
#
fig, ax = plt.subplots()
t = numpy.linspace(0, 10, 100)
ax.plot(t, numpy.cos(t)*numpy.sin(t))
plt.savefig("test.svg")

In[3]:
# Show the produced SVG file.
#
SVG(filename="test.svg")
```
The IPython notebook inline backend

When we use IPython notebook it is convenient to use a matplotlib backend that outputs the graphics embedded in the notebook file. To activate this backend, somewhere in the beginning on the notebook, we add:

```
%matplotlib inline
```

It is also possible to activate inline matplotlib plotting with:

```
%pylab inline
```

The difference is that `%pylab inline` imports a number of packages into the global address space (scipy, numpy), while `%matplotlib inline` only sets up inline plotting. In new notebooks created for IPython 1.0+, I would recommend using `%matplotlib inline`, since it is tidier and you have more control over which packages are imported and how. Commonly, scipy and numpy are imported separately with:

```
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
```

The inline backend has a number of configuration options that can be set by using the IPython magic command `%config` to update settings in InlineBackend. For example, we can switch to SVG figures or higher resolution figures with either:

```
%config InlineBackend.figure_format='svg'
```

or:
For more information, type:

```
%config InlineBackend
```

```
In[4]: %matplotlib inline
    %config InlineBackend.figure_format='svg'
    import matplotlib.pyplot as plt
    import numpy
```

```
In[5]: # Now we are using the SVG vector graphics displaced inline in the notebook
    #
    fig, ax = plt.subplots()
    t = numpy.linspace(0, 10, 100)
    ax.plot(t, numpy.cos(t)*numpy.sin(t))
    plt.savefig("test.svg")
```

Interactive backend (this makes more sense in a python script file)

```
In[1]: # RESTART THE NOTEBOOK: the matplotlib backend can only be selected before pylab is imported!
    # (e.g. Kernel > Restart)
    #
    import matplotlib
    matplotlib.use('Qt4Agg') # or for example MacOSX
    import matplotlib.pyplot as plt
    import numpy
```
In[2]: # Now, open an interactive plot window with the Qt4Agg backend
def, ax = plt.subplots()
t = numpy.linspace(0, 10, 100)
ax.plot(t, numpy.cos(t)*numpy.sin(t))
plt.show()

Note that when we use an interactive backend, we must call `plt.show()` to make the figure appear on the screen.

5.5 Further reading

- http://www.matplotlib.org - The project web page for matplotlib.
- https://github.com/matplotlib/matplotlib - The source code for matplotlib.
- http://matplotlib.org/gallery.html - A large gallery showcasing various types of plots matplotlib can create. Highly recommended!

5.6 Versions

In[3]: %install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py
%load_ext version_information
%reload_ext version_information

%version_information numpy, scipy, matplotlib

Out[3]:

<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>2.7.5+ (default, Feb 27 2014, 19:37:38) [GCC 4.8.1]</td>
</tr>
<tr>
<td>IPython</td>
<td>2.0.0</td>
</tr>
<tr>
<td>OS</td>
<td>posix [linux2]</td>
</tr>
<tr>
<td>numpy</td>
<td>1.8.1</td>
</tr>
<tr>
<td>scipy</td>
<td>0.13.3</td>
</tr>
<tr>
<td>matplotlib</td>
<td>1.3.1</td>
</tr>
<tr>
<td></td>
<td>Tue Apr 22 10:44:44 2014 JST</td>
</tr>
</tbody>
</table>
Chapter 6

Sympy - Symbolic algebra in Python

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/
The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.
The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

In[1]: %pylab inline

Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline].
For more information, type 'help(pylab)'.

6.1 Introduction

There are two notable Computer Algebra Systems (CAS) for Python:

- **SymPy** - A python module that can be used in any Python program, or in an IPython session, that provides powerful CAS features.
- **Sage** - Sage is a full-featured and very powerful CAS environment that aims to provide an open source system that competes with Mathematica and Maple. Sage is not a regular Python module, but rather a CAS environment that uses Python as its programming language.

Sage is in some aspects more powerful than SymPy, but both offer very comprehensive CAS functionality. The advantage of SymPy is that it is a regular Python module and integrates well with the IPython notebook.

In this lecture we will therefore look at how to use SymPy with IPython notebooks. If you are interested in an open source CAS environment I also recommend to read more about Sage.

To get started using SymPy in a Python program or notebook, import the module `sympy`:

In[2]: from sympy import *

To get nice-looking TeX formatted output run:

In[3]: init_printing()

or with older versions of sympy/ipython, load the IPython extension
#%load_ext sympy.interactive.ipythonprinting
or
#%load_ext sympyprinting
6.2 Symbolic variables

In SymPy we need to create symbols for the variables we want to work with. We can create a new symbol using the `Symbol` class:

```
In[4]: x = Symbol('x')
```

```
In[5]: (pi + x)**2
```

```
Out[5]: (x + π)²
```

```
In[6]: # alternative way of defining symbols
da, b, c = symbols("a, b, c")
```

```
In[7]: type(a)
```

```
Out[7]: sympy.core.symbol.Symbol
```

We can add assumptions to symbols when we create them:

```
In[8]: x = Symbol('x', real=True)
```

```
In[9]: x.is_imaginary
```

```
Out[9]: False
```

```
In[10]: x = Symbol('x', positive=True)
```

```
In[11]: x > 0
```

```
Out[11]: True
```

6.2.1 Complex numbers

The imaginary unit is denoted \(i\) in Sympy.

```
In[12]: 1+1*I
```

```
Out[12]: 1 + i
```

```
In[13]: I**2
```

```
Out[13]: -1
```
6.2.2 Rational numbers

There are three different numerical types in SymPy: Real, Rational, Integer:

In[15]:
\[
\text{r1 = Rational}(4,5) \\
\text{r2 = Rational}(5,4)
\]

Out[16]:
\[
\frac{4}{5}
\]

In[17]:
\[
\text{r1+r2}
\]

Out[17]:
\[
\frac{41}{20}
\]

In[18]:
\[
\text{r1/r2}
\]

Out[18]:
\[
\frac{16}{25}
\]

6.3 Numerical evaluation

SymPy uses a library for arbitrary precision as numerical backend, and has predefined SymPy expressions for a number of mathematical constants, such as: pi, e, oo for infinity.

To evaluate an expression numerically we can use the `evalf` function (or `N`). It takes an argument `n` which specifies the number of significant digits.

In[19]:
\[
\text{pi.evalf}(n=50)
\]

Out[19]:
\[
3.1415926535897932384626433832795028841971693993751
\]

In[20]:
\[
y = (x + \text{pi})^2
\]

In[21]:
\[
\text{N}(y, 5) \ # \ same \ as \ evalf
\]

Out[21]:
\[
(x + 3.1416)^2
\]

When we numerically evaluate algebraic expressions we often want to substitute a symbol with a numerical value. In SymPy we do that using the `subs` function:
In[22]: y.subs(x, 1.5)

Out[22]:

\((1.5 + \pi)^2\)

In[23]: N(y.subs(x, 1.5))

Out[23]:

21.5443823618587

The \texttt{subs} function can of course also be used to substitute Symbols and expressions:

In[24]: y.subs(x, a+pi)

Out[24]:

\((a + 2\pi)^2\)

We can also combine numerical evolution of expressions with NumPy arrays:

In[25]: import numpy

In[26]: x_vec = numpy.arange(0, 10, 0.1)

In[27]: y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])

In[28]: fig, ax = subplots()
 ax.plot(x_vec, y_vec);

However, this kind of numerical evolution can be very slow, and there is a much more efficient way to do it: Use the function \texttt{lambdify} to “compile” a Sympy expression into a function that is much more efficient to evaluate numerically:
In[29]: f = lambdify([x], (x + pi)**2, 'numpy') # the first argument is a list of variables that
 # f will be a function of; in this case only x -> f(x)

In[30]: y_vec = f(x_vec) # now we can directly pass a numpy array and f(x) is efficiently evaluated

The speedup when using “lambdified” functions instead of direct numerical evaluation can be significant,
only several orders of magnitude. Even in this simple example we get a significant speed up:

In[31]: %%timeit
 y_vec = numpy.array([N(((x + pi)**2).subs(x, xx)) for xx in x_vec])
 10 loops, best of 3: 20.4 ms per loop

In[32]: %%timeit
 y_vec = f(x_vec)
 100000 loops, best of 3: 3.67 µs per loop

6.4 Algebraic manipulations

One of the main uses of a CAS is to perform algebraic manipulations of expressions. For example, we might
want to expand a product, factor an expression, or simply an expression. The functions for doing these basic
operations in SymPy are demonstrated in this section.

6.4.1 Expand and factor

The first steps in an algebraic manipulation

In[33]: (x+1)*(x+2)*(x+3)

Out[33]:

 (x + 1) (x + 2) (x + 3)

In[34]: expand((x+1)*(x+2)*(x+3))

Out[34]:

 x^3 + 6x^2 + 11x + 6

The expand function takes a number of keywords arguments which we can tell the functions what kind of
expansions we want to have performed. For example, to expand trigonometric expressions, use the trig=True
keyword argument:

In[35]: sin(a+b)

Out[35]:

 sin(a + b)

In[36]: expand(sin(a+b), trig=True)
Out[36]:
\[
\sin(a) \cos(b) + \sin(b) \cos(a)
\]
See help(expand) for a detailed explanation of the various types of expansions the expand functions can perform.

The opposite a product expansion is of course factoring. The factor an expression in SymPy use the factor function:

In[37]:
\[
\text{factor}(x^3 + 6 \times x^2 + 11x + 6)
\]
Out[37]:
\[
(x+1)(x+2)(x+3)
\]

6.4.2 Simplify

The simplify tries to simplify an expression into a nice looking expression, using various techniques. More specific alternatives to the simplify functions also exists: trigsimp, powsimp, logcombine, etc.

The basic usages of these functions are as follows:

In[38]:
\[
\# \text{simplify expands a product}
\text{simplify}((x+1)*(x+2)*(x+3))
\]
Out[38]:
\[
(x+1)(x+2)(x+3)
\]

In[39]:
\[
\# \text{simplify uses trigonometric identities}
\text{simplify}((\sin(a)^2 + \cos(a)^2)
\]
Out[39]:
\[
1
\]

In[40]:
\[
\text{simplify}(\cos(x)/\sin(x))
\]
Out[40]:
\[
\frac{1}{\tan(x)}
\]

6.4.3 apart and together

To manipulate symbolic expressions of fractions, we can use the apart and together functions:

In[41]:
\[
f1 = 1/((a+1)*(a+2))
\]

In[42]:
\[
f1
\]
Out[42]:
\[
\frac{1}{(a+1)(a+2)}
\]

In[43]:
\[
\text{apart}(f1)
\]
Out[43]:
\[
-\frac{1}{a+2} + \frac{1}{a+1}
\]
In[44]: \[f2 = \frac{1}{a+2} + \frac{1}{a+3} \]

In[45]: \[f2 \]

Out[45]: \[\frac{1}{a+3} + \frac{1}{a+2} \]

In[46]: \[\text{together}(f2) \]

Out[46]: \[\frac{2a+5}{(a+2)(a+3)} \]

Simplify usually combines fractions but does not factor:

In[47]: \[\text{simplify}(f2) \]

Out[47]: \[\frac{2a+5}{(a+2)(a+3)} \]

6.5 Calculus

In addition to algebraic manipulations, the other main use of CAS is to do calculus, like derivatives and integrals of algebraic expressions.

6.5.1 Differentiation

Differentiation is usually simple. Use the \text{diff} function. The first argument is the expression to take the derivative of, and the second argument is the symbol by which to take the derivative:

In[48]: \[y \]

Out[48]: \[(x + \pi)^2 \]

In[49]: \[\text{diff}(y**2, x) \]

Out[49]: \[4(x + \pi)^3 \]

For higher order derivatives we can do:

In[50]: \[\text{diff}(y**2, x, x) \]

Out[50]: \[12(x + \pi)^2 \]

In[51]: \[\text{diff}(y**2, x, 2) \] # same as above

Out[51]: \[12(x + \pi)^2 \]

To calculate the derivative of a multivariate expression, we can do:
In[52]: x, y, z = symbols("x,y,z")

In[53]: f = sin(x*y) + cos(y*z)

$\frac{\partial^3 f}{\partial x \partial y^2}$

In[54]: diff(f, x, 1, y, 2)

Out[54]:

$-x (xy \cos (xy) + 2 \sin (xy))$

6.6 Integration

Integration is done in a similar fashion:

In[55]: f

Out[55]:

$\sin (xy) + \cos (yz)$

In[56]: integrate(f, x)

Out[56]:

$x \cos (yz) + \begin{cases} 0 & \text{for } y = 0 \\ -\frac{\cos (xy)}{y} & \text{otherwise} \end{cases}$

By providing limits for the integration variable we can evaluate definite integrals:

In[57]: integrate(f, (x, -1, 1))

Out[57]:

$2 \cos (yz)$

and also improper integrals

In[58]: integrate(exp(-x**2), (x, -oo, oo))

Out[58]:

$\sqrt{\pi}$

Remember, oo is the SymPy notation for infinity.

6.6.1 Sums and products

We can evaluate sums and products using the functions: ‘Sum’

In[59]: n = Symbol("n")

In[60]: Sum(1/n**2, (n, 1, 10))

Out[60]:

$\sum_{n=1}^{10} \frac{1}{n^2}$
6.7 Limits

Limits can be evaluated using the \texttt{limit} function. For example,

\begin{verbatim}
In[64]: limit(sin(x)/x, x, 0)
Out[64]: 1
\end{verbatim}

We can use ‘limit’ to check the result of derivation using the \texttt{diff} function:

\begin{verbatim}
In[65]: f
Out[65]: \sin (xy) + \cos (yz)

In[66]: diff(f, x)
Out[66]: y \cos (xy)
\end{verbatim}

\[
\frac{df(x,y)}{dx} = \frac{f(x+h,y) - f(x,y)}{h}
\]

\begin{verbatim}
In[67]: h = Symbol("h")

In[68]: limit((f.subs(x, x+h) - f)/h, h, 0)
Out[68]: y \cos (xy)
\end{verbatim}

OK!

We can change the direction from which we approach the limiting point using the \texttt{dir} keyword argument:
6.8 Series

Series expansion is also one of the most useful features of a CAS. In SymPy we can perform a series expansion of an expression using the `series` function:

```
In[71]: series(exp(x), x)
```

```
Out[71]:
1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + O(x^6)
```

By default it expands the expression around \(x = 0 \), but we can expand around any value of \(x \) by explicitly include a value in the function call:

```
In[72]: series(exp(x), x, 1)
```

```
Out[72]:
e + ex + \frac{1}{2}ex^2 + \frac{1}{6}ex^3 + \frac{1}{24}ex^4 + \frac{1}{120}ex^5 + O(x^6)
```

And we can explicitly define to which order the series expansion should be carried out:

```
In[73]: series(exp(x), x, 1, 10)
```

```
Out[73]:
e + ex + \frac{1}{2}ex^2 + \frac{1}{6}ex^3 + \frac{1}{24}ex^4 + \frac{1}{120}ex^5 + \frac{1}{5040}ex^6 + \frac{1}{40320}ex^7 + \frac{1}{362880}ex^8 + O(x^{10})
```

The series expansion includes the order of the approximation, which is very useful for keeping track of the order of validity when we do calculations with series expansions of different order:

```
In[74]: s1 = cos(x).series(x, 0, 5)
s1
```

```
Out[74]:
1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 + O(x^5)
```

```
In[75]: s2 = sin(x).series(x, 0, 2)
s2
```

```
Out[75]:
x + O(x^2)
```
In[76]: expand(s1 * s2)

Out[76]:
\[x + O\left(x^2\right) \]

If we want to get rid of the order information we can use the `removeO` method:

In[77]: expand(s1.removeO() * s2.removeO())

Out[77]:
\[\frac{1}{24}x^5 - \frac{1}{2}x^3 + x \]

But note that this is not the correct expansion of \(\cos(x) \sin(x) \) to 5th order:

In[78]: (cos(x)*sin(x)).series(x, 0, 6)

Out[78]:
\[x - \frac{2}{3}x^3 + \frac{2}{15}x^5 + O\left(x^6\right) \]

6.9 Linear algebra

6.9.1 Matrices

Matrices are defined using the `Matrix` class:

In[79]:
m11, m12, m21, m22 = symbols("m11, m12, m21, m22")
b1, b2 = symbols("b1, b2")

In[80]:
A = Matrix([[m11, m12],[m21, m22]])
A

Out[80]:
\[
\begin{bmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{bmatrix}
\]

In[81]:
b = Matrix([[b1], [b2]])
b

Out[81]:
\[
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\]

With `Matrix` class instances we can do the usual matrix algebra operations:

In[82]:
A**2

Out[82]:
\[
\begin{bmatrix}
m_{11}^2 + m_{12}m_{21} & m_{11}m_{12} + m_{12}m_{22} \\
m_{11}m_{21} + m_{21}m_{22} & m_{12}m_{21} + m_{22}^2
\end{bmatrix}
\]

In[83]:
A * b

Out[83]:
\[
\begin{bmatrix}
b_1m_{11} + b_2m_{12} \\
b_1m_{21} + b_2m_{22}
\end{bmatrix}
\]

And calculate determinants and inverses, and the like:
6.10 Solving equations

For solving equations and systems of equations we can use the `solve` function:

```
In[86]: solve(x**2 - 1, x)
```

```
Out[86]: [-1, 1]
```

```
In[87]: solve(x**4 - x**2 - 1, x)
```

```
Out[87]: [-i\sqrt{\frac{1}{2} + \frac{\sqrt{5}}{2}}, \frac{i}{\sqrt{2}} + \frac{1}{2} \sqrt{5}, \frac{1}{2} - \frac{1}{2} \sqrt{5}, \frac{1}{2} + i \sqrt{5}, \frac{1}{2} + \frac{1}{2} \sqrt{5}]
```

System of equations:

```
In[88]: solve([x + y - 1, x - y - 1], [x,y])
```

```
Out[88]: {x: 1, y: 0}
```

In terms of other symbolic expressions:

```
In[89]: solve([x + y - a, x - y - c], [x,y])
```

```
Out[89]: {x: \frac{1}{2}a + \frac{1}{2}c, y: \frac{1}{2}a - \frac{1}{2}c}
```

6.11 Quantum mechanics: noncommuting variables

How about non-commuting symbols? In quantum mechanics we need to work with noncommuting operators, and SymPy has a nice support for noncommuting symbols and even a subpackage for quantum mechanics related calculations!

```
In[5]: from sympy.physics.quantum import *
```

6.12 States

We can define symbol states, kets and bras:
In[91]: Ket('ψ')
Out[91]: |ψ⟩

In[92]: Bra('ψ')
Out[92]: ⟨ψ|

In[93]: u = Ket('0')
d = Ket('1')
 a, b = symbols('alpha beta', complex=True)

In[94]: phi = a * u + sqrt(1-abs(a)**2) * d; phi
Out[94]: α|0⟩ + √−|α|² + 1|1⟩

In[95]: Dagger(phi)
Out[95]: α⟨0| + √−|α|² + 1⟨1|

In[96]: Dagger(phi) * d
Out[96]: (α⟨0| + √−|α|² + 1⟨1|)|1⟩

Use qapply to distribute a multiplication:

In[97]: qapply(Dagger(phi) * d)
Out[97]: α⟨0| + √−|α|² + 1⟨1|

In[98]: qapply(Dagger(phi) * u)
Out[98]: α⟨0| + √−|α|² + 1⟨1|0⟩

6.12.1 Operators
In[6]:
A = Operator('A')
B = Operator('B')

Check if they are commuting!

In[100]:
A * B == B * A

Out[100]:
False

In[101]:
expand((A+B)**3)

Out[101]:
ABA + A(B)^2 + (A)^2 B + (A)^3 + BAB + B(A)^2 + (B)^2 A + (B)^3

In[102]:
c = Commutator(A,B)
c

Out[102]:
[A, B]

We can use the `doit` method to evaluate the commutator:

In[103]:
c.doit()

Out[103]:
AB − BA

We can mix quantum operators with C-numbers:

In[104]:
c = Commutator(a * A, b * B)
c

Out[104]:
\(\alpha \beta [A, B] \)

To expand the commutator, use the `expand` method with the `commutator=True` keyword argument:

In[105]:
c = Commutator(A+B, A*B)
c.expand(commutator=True)

Out[105]:

In[106]:
Dagger(Commutator(A, B))

Out[106]:
−[A†, B†]

In[107]:
ac = AntiCommutator(A,B)
Example: Quadrature commutator

Let’s look at the commutator of the electromagnetic field quadratures x and p. We can write the quadrature operators in terms of the creation and annihilation operators as:

\[
\begin{align*}
 x &= (a + a^\dagger)/\sqrt{2} \\
 p &= -i(a - a^\dagger)/\sqrt{2}
\end{align*}
\]

```python
In[109]:
X = (A + Dagger(A))/sqrt(2)
X
Out[109]:
1/2 \sqrt{2} \left( A^\dagger + A \right)
```

```python
In[110]:
P = -I * (A - Dagger(A))/sqrt(2)
P
Out[110]:
-1/2 \sqrt{2}i \left( -A^\dagger + A \right)
```

Let’s expand the commutator $[x,p]$

```python
In[111]:
Commutator(X, P).expand(commutator=True).expand(commutator=True)
Out[111]:
-i \left[ A^\dagger, A \right]
```

Here we see directly that the well known commutation relation for the quadratures

$[x,p] = i$

is a directly related to

$[A, A^\dagger] = 1$

(which SymPy does not know about, and does not simplify).

For more details on the quantum module in SymPy, see:

- http://docs.sympy.org/0.7.2/modules/physics/quantum/index.html

6.13 Further reading

- https://github.com/sympy/sympy - The source code of SymPy.
- http://live.sympy.org - Online version of SymPy for testing and demonstrations.
<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>3.3.2+ (default, Feb 28 2014, 00:52:16) [GCC 4.8.1]</td>
</tr>
<tr>
<td>IPython</td>
<td>2.2.0</td>
</tr>
<tr>
<td>OS</td>
<td>posix [linux]</td>
</tr>
<tr>
<td>numpy</td>
<td>1.8.2</td>
</tr>
<tr>
<td>sympy</td>
<td>0.7.5</td>
</tr>
</tbody>
</table>

Tue Aug 26 22:57:37 2014 JST

6.14 Versions

```
In[7]: %reload_ext version_information
    %version_information numpy, sympy

Out[7]:
```
Chapter 7

Using Fortran and C code with Python

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/
The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.
The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

In[1]: %pylab inline
from IPython.display import Image

Populating the interactive namespace from numpy and matplotlib

The advantage of Python is that it is flexible and easy to program. The time it takes to setup a new calculation is therefore short. But for certain types of calculations Python (and any other interpreted language) can be very slow. It is particularly iterations over large arrays that is difficult to do efficiently.

Such calculations may be implemented in a compiled language such as C or Fortran. In Python it is relatively easy to call out to libraries with compiled C or Fortran code. In this lecture we will look at how to do that.

But before we go ahead and work on optimizing anything, it is always worthwhile to ask....

In[2]: Image(filename='images/optimizing-what.png')

Out[2]:

![Image of optimization chart](images/optimizing-what.png)

- HIGH-LEVEL LANGUAGE
- LOW-LEVEL LANGUAGE 1
- LOW-LEVEL LANGUAGE 2
7.1 Fortran

7.1.1 F2PY

F2PY is a program that (almost) automatically wraps fortran code for use in Python: By using the f2py program we can compile fortran code into a module that we can import in a Python program.

F2PY is a part of NumPy, but you will also need to have a fortran compiler to run the examples below.

7.1.2 Example 0: scalar input, no output

```python
%%file hellofortran.f
C File hellofortran.f
subroutine hellofortran (n)
integer n
    do 100 i=0, n
        print *, "Fortran says hello"
100 continue
end
Overwriting hellofortran.f
Generate a python module using f2py:
```

```
!f2py -c -m hellofortran hellofortran.f
running build
running config.cc
unifying config.cc, config, build_clib, build_ext, build commands --compiler options
running config.fc
unifying config.fc, config, build_clib, build_ext, build commands --fcompiler options
running build_src
build_src
building extension "hellofortran" sources
f2py options: []
f2py:> /tmp/tmpz2IPjB/src.linux-x86_64-2.7/hellofortranmodule.c
creating /tmp/tmpz2IPjB/src.linux-x86_64-2.7
Reading fortran codes...
    Reading file 'hellofortran.f' (format:fix,strict)
Post-processing...
    Block: hellofortran
Post-processing (stage 2)...
Building modules...
    Building module "hellofortran"...
        Constructing wrapper function "hellofortran"...
        hellofortran(n)
        Wrote C/API module "hellofortran" to file "/tmp/tmpz2IPjB/src.linux-x86_64-2.7/hellofortranmodule.c" to sources.
        adding '/tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.c' to sources.
        adding '/tmp/tmpz2IPjB/src.linux-x86_64-2.7' to include_dirs.
copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.c -> /tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.c
    copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.h -> /tmp/tmpz2IPjB/src.linux-x86_64-2.7/fortranobject.h
build_src: building npy-pkg config files
running build_ext
customize UnixCCompiler
customize UnixCCompiler using build_ext
customize Gnu95FCCompiler
Found executable /usr/bin/gfortran
customize Gnu95FCCompiler
customize Gnu95FCCompiler using build_ext
building 'hellofortran' extension
compiling C sources
C compiler: x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-pr
```
Example of a python script that use the module:

```python
In[5]:  ```file hello.py
import hellofortran
hellofortran.hellofortran(5)
```
```
Overwriting hello.py
```

```bash
In[6]:  # run the script
```
```
!python hello.py
``` 
```
Fortran says hello
``` 

7.1.3 Example 1: vector input and scalar output

```bash
In[7]:  ```file dprod.f
```
```
subroutine dprod(x, y, n)
double precision x(n), y
y = 1.0
```
```
do 100 i=1, n
  y = y * x(i)
```
```
end
``` 

146
Overwriting dprod.f

In[8]:
```
rm -f dprod.pyf
f2py -m dprod -h dprod.pyf dprod.f
```

Reading fortran codes...
Reading file 'dprod.f' (format:fix,strict)
Post-processing...
Block: dprod
{}
In: dprod:dprod.f:dprod
vars2fortran: No typespec for argument "n".
Block: dprod
Post-processing (stage 2)...
Saving signatures to file ". ./dprod.pyf"

The `f2py` program generated a module declaration file called `dsum.pyf`. Let’s look what’s in it:

In[9]:
```
cat dprod.pyf
```

```
-*- f90 -*-
! Note: the context of this file is case sensitive.

python module dprod ! in
interface ! in :dprod
    subroutine dprod(x,y,n) ! in :dprod:dprod.f
        double precision dimension(n) :: x
        double precision :: y
        integer, optional, check(len(x)>=n), depend(x) :: n=len(x)
    end subroutine dprod
end interface
end python module dprod

! This file was auto-generated with f2py (version:2).
! See http://cens.ioc.ee/projects/f2py2e/
```

The module does not know what Fortran subroutine arguments is input and output, so we need to manually edit the module declaration files and mark output variables with `intent(out)` and input variable with `intent(in)`:

In[10]:
```
%%file dprod.pyf
python module dprod ! in
interface ! in :dprod
    subroutine dprod(x,y,n) ! in :dprod:dprod.f
        double precision dimension(n), intent(in) :: x
        double precision, intent(out) :: y
        integer, optional, check(len(x)>=n), depend(x), intent(in) :: n=len(x)
    end subroutine dprod
end interface
end python module dprod
```

Overwriting dprod.pyf

Compile the fortran code into a module that can be included in python:

In[11]:
```
f2py -c dprod.pyf dprod.f
```
running build
running config cc
unifing config cc, config, build_clib, build_ext, build commands --compiler options
running config fc
unifing config fc, config, build_clib, build_ext, build commands --fcompiler options
running build src
building extension "dprod" sources
creating /tmp/tmpWyCvx1/src.linux-x86_64-2.7
f2py options: []
f2py: dprod.pyf
Reading fortran codes...
Reading file 'dprod.pyf' (format:free)
Post-processing...
Block: dprod
Post-processing (stage 2)...
Building modules...
Building module "dprod"...
 Constructing wrapper function "dprod"...
 y = dprod(x,[n])
 Wrote C/API module "dprod" to file "/tmp/tmpWyCvx1/src.linux-x86_64-2.7/dprodmodule.c"
 adding '/tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c' to sources.
 adding '/tmp/tmpWyCvx1/src.linux-x86_64-2.7' to include_dirs.
copying /usr/lib/python2.7/dist-packages/numpy/f2py/src/fortranobject.c -> /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c
build src: building npy-pkg config files
running build ext
customize UnixCCompiler
customize UnixCCompiler using build_ext
customize Gnu95FCompiler
Found executable /usr/bin/gfortran
customize Gnu95FCompiler
customize Gnu95FCompiler using build_ext
building 'dprod' extension
compiling C sources
C compiler: x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC
creating /tmp/tmpWyCvx1/tmp
creating /tmp/tmpWyCvx1/tmp/tmpWyCvx1
creating /tmp/tmpWyCvx1/src.linux-x86_64-2.7
compile options: '-I/tmp/tmpWyCvx1/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0, from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17, from /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c:18:

/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:15:2: warning: #warning "Using deprecated NumPy API, disable it by " #defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION [-Wcpp]

warningly "Using deprecated NumPy API, disable it by "

In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0, from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17, from /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c:18:

/x86_64-linux-gnu-gcc: /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0, from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17, from /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c:18:

compiling Fortran sources
Fortran f77 compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -fPIC -O3 -funroll-loops
Fortran f90 compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -fPIC -O3 -funroll-loops
Fortran fix compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-second-underscore -Wall -fno-second-underscore
compile options: '-I/tmp/tmpWyCvx1/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0, from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17, from /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c:18:

/x86_64-linux-gnu-gcc: /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0, from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17, from /tmp/tmpWyCvx1/src.linux-x86_64-2.7/fortranobject.c:18:

...
Using the module from Python

In[12]: import dprod

In[13]: help(dprod)

Help on module dprod:

NAME
dprod

FILE
/home/rob/Desktop/scientific-python-lectures/dprod.so

DESCRIPTION
This module 'dprod' is auto-generated with f2py (version:2).
Functions:
 y = dprod(x,n=len(x))

DATA
 __version__ = '$Revision: $'
dprod = <fortran object>

VERSION

In[14]: dprod.dprod(arange(1,50))

Out[14]: 6.082818640342675e+62

In[15]: # compare to numpy
 prod(arange(1.0,50.0))

Out[15]: 6.0828186403426752e+62

In[16]: dprod.dprod(arange(1,10), 5) # only the 5 first elements

Out[16]: 120.0

Compare performance:

In[17]: xvec = rand(500)

In[18]: timeit dprod.dprod(xvec)

 1000000 loops, best of 3: 882 ns per loop
7.1.4 Example 2: cumulative sum, vector input and vector output

The cumulative sum function for an array of data is a good example of a loop intense algorithm: Loop through a vector and store the cumulative sum in another vector.

```
In[20]: # simple python algorithm: example of a SLOW implementation
    # Why? Because the loop is implemented in python.
    def py_dcumsum(a):
        b = empty_like(a)
        b[0] = a[0]
        for n in range(1,len(a)):
            b[n] = b[n-1]+a[n]
        return b
```

Fortran subroutine for the same thing: here we have added the `intent(in)` and `intent(out)` as comment lines in the original fortran code, so we do not need to manually edit the fortran module declaration file generated by `f2py`.

```
In[21]: %file dcumsum.f
c File dcumsum.f
subroutine dcumsum(a, b, n)
double precision a(n)
double precision b(n)
integer n
cf2py intent(in) :: a
cf2py intent(out) :: b
cf2py intent(hide) :: n
b(1) = a(1)
do 100 i=2, n
   b(i) = b(i-1) + a(i)
100 continue
end
```

We can directly compile the fortran code to a python module:

```
In[22]: !f2py -c dcumsum.f -m dcumsum
```

```
running build
running config.cc
unifing config.cc, config, build_clib, build_ext, build commands --compiler options
running config.fc
unifing config.fc, config, build_clib, build_ext, build commands --fcompiler options
running build_src
build_src
building extension "dcumsum" sources
f2py options: []
f2py: /tmp/tmpfvrMl6/src.linux-x86_64-2.7/dcumsummodule.c
creating /tmp/tmpfvrMl6/src.linux-x86_64-2.7
Reading fortran codes...
    Reading file 'dcumsum.f' (format:fix, strict)
Post-processing...
    Block: dcumsum
Post-processing (stage 2)...
Building modules...
```
Building module "dcumsum"...
 Constructing wrapper function "dcumsum"...
 b = dcumsum(a)
Wrote C/API module "dcumsum" to file "/tmp/tmpfvrMl6/src.linux-x86_64-2.7/dcumsummodule.c"
adding '/tmp/tmpfvrMl6/src.linux-x86_64-2.7/fortranobject.c' to sources.
adding '/tmp/tmpfvrMl6/src.linux-x86_64-2.7/fortranobject.h' to /tmp/tmpfvrMl6/src.linux-x86_64-2.7/dcumsummodule.c'
build_src: building npy-pkg config files
running build_ext
customize UnixCCompiler
customize UnixCCompiler using build_ext
customize Gnu95FCompiler
Found executable /usr/bin/gfortran
customize Gnu95FCompiler using build_ext
building 'dcumsum' extension
compiling C sources
C compiler: x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fPIC
creating /tmp/tmpfvrMl6/tmp
creating /tmp/tmpfvrMl6/tmp/tmpfvrMl6
creating /tmp/tmpfvrMl6/tmp/tmpfvrMl6/src.linux-x86_64-2.7
compile options: '-I/tmp/tmpfvrMl6/src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h -I/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h -I/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h -c'
x86_64-linux-gnu-gcc: /tmp/tmpfvrMl6(src.linux-x86_64-2.7/dcumsummodule.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
 from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
 from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/arrayobject.h:4,
 from /tmp/tmpfvrMl6(src.linux-x86_64-2.7/fortranobject.h:13,
 from /tmp/tmpfvrMl6(src.linux-x86_64-2.7/dcumsummodule.c:18:
/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0: warning: #warning "Using deprecated NumPy API, disable it by " -Wcpp
 ^

/tmp/tmpfvrMl6(src.linux-x86_64-2.7/dcumsummodule.c:111:12: warning: 'f2py_size' defined but not used [-Wunused-function]
 static int f2py_size(PyArrayObject* var, ...)
x86_64-linux-gnu-gcc: /tmp/tmpfvrMl6(src.linux-x86_64-2.7/fortranobject.c
In file included from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0,
 from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
 from /usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarrayobject.h:17,
 from /tmp/tmpfvrMl6(src.linux-x86_64-2.7/fortranobject.h:13,
 from /tmp/tmpfvrMl6(src.linux-x86_64-2.7/fortranobject.c:2:
/usr/lib/python2.7/dist-packages/numpy/core/include/numpy/ndarraytypes.h:1761:0: warning: #warning "Using deprecated NumPy API, disable it by " -Wcpp
 ^

compiling Fortran sources
Fortran f77 compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-strict-underscore -fPIC -O3 -funroll-loops
Fortran f90 compiler: /usr/bin/gfortran -Wall -fno-second-underscore -fPIC -O3 -funroll-loops
Fortran fix compiler: /usr/bin/gfortran -Wall -ffixed-form -fno-strict-underscore -Wall -fno-second-underscore
compile options: '-I/tmp/tmpfvrMl6(src.linux-x86_64-2.7 -I/usr/lib/python2.7/dist-packages/numpy/core/include/gfortran.f77: dcumsum.f
/usr/bin/gfortran -Wall -Wall -shared /tmp/tmpfvrMl6(src.linux-x86_64-2.7/dcumsummodule.o

In[23]: import dcumsum

In[24]: a = array([1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0])

In[25]: py_dcumsum(a)
Out[25]: array([1., 3., 6., 10., 15., 21., 28., 36.])

In[26]: dcumsum.dcumsum(a)

Out[26]: array([1., 3., 6., 10., 15., 21., 28., 36.])

In[27]: cumsum(a)

Out[27]: array([1., 3., 6., 10., 15., 21., 28., 36.])

Benchmark the different implementations:

In[28]: a = rand(10000)

In[29]: timeit py_dcumsum(a)

 100 loops, best of 3: 4.83 ms per loop

In[30]: timeit dcumsum.dcumsum(a)

 100000 loops, best of 3: 12.2 µs per loop

In[31]: timeit a.cumsum()

 10000 loops, best of 3: 27.4 µs per loop

7.1.5 Further reading

1. http://www.scipy.org/F2py

7.2 C

7.3 ctypes

c ctypes is a Python library for calling out to C code. It is not as automatic as f2py, and we manually need to load the library and set properties such as the functions return and argument types. On the other hand we do not need to touch the C code at all.

In[32]: %%file functions.c

 #include <stdio.h>
 void hello(int n);
 double dprod(double *x, int n);
 void dcumsum(double *a, double *b, int n);

152
void hello(int n)
{
 int i;
 for (i = 0; i < n; i++)
 {
 printf("C says hello\n");
 }
}

double dprod(double *x, int n)
{
 int i;
 double y = 1.0;
 for (i = 0; i < n; i++)
 {
 y *= x[i];
 }
 return y;
}

void dcumsum(double *a, double *b, int n)
{
 int i;
 b[0] = a[0];
 for (i = 1; i < n; i++)
 {
 b[i] = a[i] + b[i-1];
 }
}

Overwriting functions.c

Compile the C file into a shared library:

```
In[33]: !gcc -c -Wall -O2 -Wall -ansi -pedantic -fPIC -o functions.o functions.c
!gcc -o libfunctions.so -shared functions.o
```

The result is a compiled shared library libfunctions.so:

```
In[34]: !file libfunctions.so
libfunctions.so: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, BuildID[sha1]=d68173ae6a804f703472af96f413b81a189db4b8, not stripped
```

Now we need to write wrapper functions to access the C library: To load the library we use the ctypes package, which included in the Python standard library (with extensions from numpy for passing arrays to C). Then we manually set the types of the argument and return values (no automatic code inspection here!).

```
In[35]: %%file functions.py

import numpy
import ctypes

_libfunctions = numpy.ctypeslib.load_library('libfunctions', '.
```
OVerwriting functions.py

In[36]: %%file run_hello_c.py

import functions
functions.hello(3)

Overwriting run_hello_c.py

In[37]: !python run_hello_c.py

C says hello
C says hello
C says hello

In[38]: import functions

7.3.1 Product function:

In[39]: functions.dprod([1,2,3,4,5])

Out[39]: 120.0

7.3.2 Cummulative sum:

In[40]: a = rand(100000)
In[41]: `res_c = functions.dcumsum(a, len(a))`

In[42]: `res_fortran = dcumsum.dcumsum(a)`

In[43]: `res_c - res_fortran`

Out[43]: `array([0., 0., 0., ..., 0., 0., 0.])`

7.3.3 Simple benchmark

In[44]: ```python
timeit functions.dcumsum(a, len(a))
```

```
1000 loops, best of 3: 286 µs per loop
```

In[45]: ```python
timeit dcumsum.dcumsum(a)
```

```
10000 loops, best of 3: 119 µs per loop
```

In[46]: ```python
timeit a.cumsum()
```

```
1000 loops, best of 3: 261 µs per loop
```

### 7.3.4 Further reading

- [http://docs.python.org/2/library/ctypes.html](http://docs.python.org/2/library/ctypes.html)
- [http://www.scipy.org/Cookbook/Ctypes](http://www.scipy.org/Cookbook/Ctypes)

### 7.4 Cython

A hybrid between python and C that can be compiled: Basically Python code with type declarations.

In[47]: ```python
%%file cy_dcumsum.pyx

cimport numpy

def dcumsum(numpy.ndarray[numpy.float64_t, ndim=1] a, numpy.ndarray[numpy.float64_t, ndim=1] b):
    cdef int i, n = len(a)
    b[0] = a[0]
    for i from 0 <= i < n:
        b[i] = b[i-1] + a[i]
    return b
```

Overwriting cy_dcumsum.pyx

A build file for generating C code and compiling it into a Python module.
```python
# file setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
setup(
    cmdclass = {'build_ext': build_ext},
    ext_modules = [Extension("cy_dcumsum", ["cy_dcumsum.pyx"])]
)
```

Overwriting setup.py

```
In[49]: %python setup.py build_ext --inplace

running build_ext
cythoning cy_dcumsum.pyx to cy_dcumsum.c
warning: /usr/local/lib/python2.7/dist-packages/Cython/Includes/numpy.pxd:869:17: Non-trivial type declarators in shared declaration (e.g. mix of pointers and values). Each pointer declaration should be on its own line.
warning: /usr/local/lib/python2.7/dist-packages/Cython/Includes/numpy.pxd:869:24: Non-trivial type declarators in shared declaration (e.g. mix of pointers and values). Each pointer declaration should be on its own line.
building 'cy_dcumsum' extension
x86_64-linux-gnu-gcc -pthread -fno-strict-aliasing -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fpic -I/usr/include/python2.7 -c cy_dcumsum.c -o build/temp.linux-x86_64-2.7/cy_dcumsum.o
In file included from /usr/include/python2.7/numpy/ndarraytypes.h:1761:0,
    from /usr/include/python2.7/numpy/ndarrayobject.h:17,
    from /usr/include/python2.7/numpy/arrayobject.h:4,
    from cy_dcumsum.c:352:
/usr/include/python2.7/numpy/npyp1_7deprecated_api.h:15:2: warning: #warning "Using deprecated NumPy API, disable it by "
    #warning "Using deprecated NumPy API, disable it by "
In file included from /usr/include/python2.7/numpy/ndarrayobject.h:26:0,
    from /usr/include/python2.7/numpy/arrayobject.h:4,
    from cy_dcumsum.c:352:
/usr/include/python2.7/numpy/__multiarray_api.h:1629:1: warning: `_import_array` defined but not used [-WUnusedImport]
    _import_array(void)
    _import_array(void)
In file included from /usr/include/python2.7/numpy/ufuncobject.h:327:0,
    from cy_dcumsum.c:353:
/usr/include/python2.7/numpy/__ufunc_api.h:241:1: warning: `_import_umath` defined but not used [-WUnusedImport]
    _import_umath(void)
    _import_umath(void)
```

```
In[50]: import cy_dcumsum

In[51]: a = array([1,2,3,4], dtype=float)
b = empty_like(a)
cy_dcumsum.dcumsum(a,b)
b
Out[51]: array([ 1.,  3.,  6., 10.])

In[52]: a = array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])

In[53]: b = empty_like(a)
cy_dcumsum.dcumsum(a, b)
b
```

156
Out[53]: array([1., 3., 6., 10., 15., 21., 28., 36.])

In[54]:
py_dcumsum(a)

Out[54]: array([1., 3., 6., 10., 15., 21., 28., 36.])

In[55]:
a = rand(100000)
b = empty_like(a)

In[56]:
timeit py_dcumsum(a)

10 loops, best of 3: 50.1 ms per loop

In[57]:
timeit cy_dcumsum.dcumsum(a,b)

1000 loops, best of 3: 263 µs per loop

7.4.1 Cython in the IPython notebook

When working with the IPython (especially in the notebook), there is a more convenient way of compiling and loading Cython code. Using the %%cython IPython magic (command to IPython), we can simply type the Cython code in a code cell and let IPython take care of the conversion to C code, compilation and loading of the function. To be able to use the %%cython magic, we first need to load the extension cythonmagic:

In[58]:
%load_ext cythonmagic

In[62]:
%%cython
cimport numpy
def cy_dcumsum2(numpy.ndarray[numpy.float64_t, ndim=1] a, numpy.ndarray[numpy.float64_t, ndim=1] b):
cdef int i, n = len(a)
b[0] = a[0]
for i from 1 <= i < n:
 b[i] = b[i-1] + a[i]
return b

In[63]:
timeit cy_dcumsum2(a,b)

1000 loops, best of 3: 265 µs per loop

7.4.2 Further reading

- http://cython.org
- http://docs.cython.org/src/userguide/tutorial.html
- http://wiki.cython.org/tutorials/numpy

7.5 Versions
<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>2.7.6 (default, Mar 22 2014, 22:59:56) [GCC 4.8.2]</td>
</tr>
<tr>
<td>IPython</td>
<td>1.1.0</td>
</tr>
<tr>
<td>OS</td>
<td>posix [linux2]</td>
</tr>
<tr>
<td>ctypes</td>
<td>1.1.0</td>
</tr>
<tr>
<td>Cython</td>
<td>0.20.2</td>
</tr>
</tbody>
</table>

Tue Aug 26 23:37:29 2014 JST

In[64]: %reload_ext version_information
 %version_information ctypes, Cython

Out[64]:
Chapter 8

Tools for high-performance computing applications

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.io.

```python
In[1]: %matplotlib inline
import matplotlib.pyplot as plt
```

8.1 multiprocessing

Python has a built-in process-based library for concurrent computing, called multiprocessing.

```python
In[2]: import multiprocessing
import os
import time
import numpy

In[3]: def task(args):
    print("PID =", os.getpid(), ", args =", args)
    return os.getpid(), args

In[4]: task("test")

PID = 28995 , args = test
Out[4]: (28995, 'test')

In[5]: pool = multiprocessing.Pool(processes=4)

In[6]: result = pool.map(task, [1,2,3,4,5,6,7,8])
```
The multiprocessing package is very useful for highly parallel tasks that do not need to communicate with each other, other than when sending the initial data to the pool of processes and when and collecting the results.

8.2 IPython parallel

IPython includes a very interesting and versatile parallel computing environment, which is very easy to use. It builds on the concept of ipython engines and controllers, that one can connect to and submit tasks to. To get started using this framework for parallel computing, one first have to start up an IPython cluster of engines. The easiest way to do this is to use the `ipcluster` command,

```
$ ipcluster start -n 4
```

Or, alternatively, from the “Clusters” tab on the IPython notebook dashboard page. This will start 4 IPython engines on the current host, which is useful for multicore systems. It is also possible to setup IPython clusters that spans over many nodes in a computing cluster. For more information about possible use cases, see the official documentation Using IPython for parallel computing.

To use the IPython cluster in our Python programs or notebooks, we start by creating an instance of `IPython.parallel.Client`:

```
In[8]: from IPython.parallel import Client

In[9]: cli = Client()

In[10]: cli.ids
```

Using the ‘ids’ attribute we can retrieve a list of ids for the IPython engines in the cluster:

```
Out[10]: [0, 1, 2, 3]
```

Each of these engines are ready to execute tasks. We can selectively run code on individual engines:
In[12]: # first try it on the notebook process
getpid()

Out[12]: 28995

In[13]: # run it on one of the engines
cli[0].apply_sync(getpid)

Out[13]: 30181

In[14]: # run it on ALL of the engines at the same time
cli[:].apply_sync(getpid)

Out[14]: [30181, 30182, 30183, 30185]

We can use this cluster of IPython engines to execute tasks in parallel. The easiest way to dispatch a function to different engines is to define the function with the decorator:

@view.parallel(block=True)

Here, view is supposed to be the engine pool which we want to dispatch the function (task). Once our function is defined this way we can dispatch it to the engine using the map method in the resulting class (in Python, a decorator is a language construct which automatically wraps the function into another function or a class).

To see how all this works, lets look at an example:

In[15]: dview = cli[:]

In[16]: @dview.parallel(block=True)
def dummy_task(delay):

 """ a dummy task that takes 'delay' seconds to finish """
 import os, time
 t0 = time.time()
 pid = os.getpid()
 time.sleep(delay)
 t1 = time.time()
 return [pid, t0, t1]

In[17]: # generate random delay times for dummy tasks
delay_times = numpy.random.rand(4)

Now, to map the function dummy_task to the random delay time data, we use the map method in dummy_task:

In[18]: dummy_task.map(delay_times)

Out[18]: [[30181, 1395044753.2096598, 1395044753.9150908],
[30182, 1395044753.2084103, 1395044753.4959202],
[30183, 1395044753.2113762, 1395044753.6453338],
[30185, 1395044753.2130392, 1395044754.1908618]]

Let’s do the same thing again with many more tasks and visualize how these tasks are executed on different IPython engines:
In[19]:
```python
def visualize_tasks(results):
    res = numpy.array(results)
    fig, ax = plt.subplots(figsize=(10, res.shape[1]))

    yticks = []
yticklabels = []
tmin = min(res[:,1])
for n, pid in enumerate(numpy.unique(res[:,0])):
yticks.append(n)
yticklabels.append("%d" % pid)
for m in numpy.where(res[:,0] == pid)[0]:
    ax.add_patch(plt.Rectangle((res[m,1] - tmin, n-0.25),
                                res[m,2] - res[m,1], 0.5, color="green", alpha=0.5))
ax.set_ylim(-.5, n+.5)
ax.set_xlim(0, max(res[:,2]) - tmin + 0.)
ax.set_yticks(yticks)
ax.set_yticklabels(yticklabels)
ax.set_ylabel("PID")
ax.set_xlabel("seconds")
```

In[20]:
```python
delay_times = numpy.random.rand(64)
```

In[21]:
```python
result = dummy_task.map(delay_times)
visualize_tasks(result)
```

That’s a nice and easy parallelization! We can see that we utilize all four engines quite well.

But one short coming so far is that the tasks are not load balanced, so one engine might be idle while others still have more tasks to work on.

However, the IPython parallel environment provides a number of alternative “views” of the engine cluster, and there is a view that provides load balancing as well (above we have used the “direct view”, which is why we called it “dview”).

To obtain a load balanced view we simply use the `load_balanced_view` method in the engine cluster client instance `cli`:

In[22]:
```python
lbview = cli.load_balanced_view()
```

In[23]:
```python
@lbview.parallel(block=True)
def dummy_task_load_balanced(delay):
    """ a dummy task that takes 'delay' seconds to finish ""
    import os, time
```
```python
t0 = time.time()
pid = os.getpid()
time.sleep(delay)
t1 = time.time()
return [pid, t0, t1]
```

```python
In[24]: result = dummy_task_load_balanced.map(delay_times)
visualize_tasks(result)
```

In the example above we can see that the engine cluster is a bit more efficiently used, and the time to completion is shorter than in the previous example.

8.2.1 Further reading

There are many other ways to use the IPython parallel environment. The official documentation has a nice guide:

8.3 MPI

When more communication between processes is required, sophisticated solutions such as MPI and OpenMP are often needed. MPI is process based parallel processing library/protocol, and can be used in Python programs through the [mpi4py](http://mpi4py.scipy.org/) package:

```python
from mpi4py import MPI
```

To use the mpi4py package we include MPI from mpi4py:

```python
from mpi4py import MPI
```

A MPI python program must be started using the `mpirun -n N` command, where N is the number of processes that should be included in the process group.

Note that the IPython parallel environment also has support for MPI, but to begin with we will use mpi4py and the mpirun in the follow examples.

8.3.1 Example 1

```python
In[25]:
```
8.3.2 Example 2

Send a numpy array from one process to another:

```
In[28]: !mpirun -n 2 python mpi-numpy-array.py
```

```
rank = 0 , data = [ 0.71397658 0.37182268 0.25863587 0.08007216 0.50832534 0.80038331
 0.90613024 0.99535428 0.11717776 0.48353805]
rank = 1 , data = [ 0.71397658 0.37182268 0.25863587 0.08007216 0.50832534 0.80038331
 0.90613024 0.99535428 0.11717776 0.48353805]
```

8.3.3 Example 3: Matrix-vector multiplication

```
In[29]: # prepare some random data
N = 16
A = numpy.random.rand(N, N)
numpy.save("random-matrix.npy", A)
x = numpy.random.rand(N)
numpy.save("random-vector.npy", x)
```
In[30]:
```python
from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
p = comm.Get_size()

def matvec(comm, A, x):
m = A.shape[0] / p
y_part = numpy.dot(A[rank * m:(rank+1)*m], x)
y = numpy.zeros_like(x)
comm.Allgather([y_part, MPI.DOUBLE], [y, MPI.DOUBLE])
return y

A = numpy.load("random-matrix.npy")
x = numpy.load("random-vector.npy")
y_mpi = matvec(comm, A, x)
if rank == 0:
y = numpy.dot(A, x)
print(y_mpi)
print "sum(y - y_mpi) =", (y - y_mpi).sum()
```

Overwriting mpi-matrix-vector.py

In[31]:
```
!mpirun -n 4 python mpi-matrix-vector.py
```

```
  5.33319708 5.42803442 5.12403754 4.87891654 2.38660728 6.72030412
  4.05218475 3.37415974 3.90903001 5.82330226]
sum(y - y_mpi) = 0.0
```

8.3.4 Example 4: Sum of the elements in a vector

In[32]:
```
# prepare some random data
N = 128
a = numpy.random.rand(N)
numpy.save("random-vector.npy", a)
```

In[33]:
```
from mpi4py import MPI
import numpy as np
def psum(a):
r = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
m = len(a) / size
locsum = np.sum(a[r*m:(r+1)*m])
rcvBuf = np.array(0.0, 'd')
MPI.COMM_WORLD.Allreduce([locsum, MPI.DOUBLE], [rcvBuf, MPI.DOUBLE], op=MPI.SUM)
return rcvBuf

a = np.load("random-vector.npy")
s = psum(a)
if MPI.COMM_WORLD.Get_rank() == 0:
    print "sum =", s, ", numpy sum =", a.sum()
```

```
165
```
Overwriting mpi-psum.py

```
In[34]: !mpirun -n 4 python mpi-psum.py
sum = 64.948311241 , numpy sum = 64.948311241
```

8.3.5 Further reading

- http://mpi4py.scipy.org
- http://mpi4py.scipy.org/docs/usrman/tutorial.html
- https://computing.llnl.gov/tutorials/mpi/

8.4 OpenMP

What about OpenMP? OpenMP is a standard and widely used thread-based parallel API that unfortunately is not useful directly in Python. The reason is that the CPython implementation use a global interpreter lock, making it impossible to simultaneously run several Python threads. Threads are therefore not useful for parallel computing in Python, unless it is only used to wrap compiled code that do the OpenMP parallelization (Numpy can do something like that).

This is clearly a limitation in the Python interpreter, and as a consequence all parallelization in Python must use processes (not threads).

However, there is a way around this that is not that painful. When calling out to compiled code the GIL is released, and it is possible to write Python-like code in Cython where we can selectively release the GIL and do OpenMP computations.

```
In[35]: N_core = multiprocessing.cpu_count()
print("This system has %d cores" % N_core)
```

This system has 12 cores

Here is a simple example that shows how OpenMP can be used via cython:

```
In[36]: %load_ext cythonmagic
```

```
In[37]: %cython -f -c-fopenmp --link-args=-fopenmp -c -g
cimport cython
cimport numpy
from cython.parallel import prange, parallel
cimport openmp
def cy_openmp_test():
    cdef int n, N
    # release GIL so that we can use OpenMP
    with nogil, parallel():
        N = openmp.omp_get_num_threads()
        n = openmp.omp_get_thread_num()
        with gil:
            print("Number of threads %d; thread number %d" % (N, n))
```
8.4.1 Example: matrix vector multiplication

Let’s first look at a simple implementation of matrix-vector multiplication in Cython:

```python
# prepare some random data
N = 4 * N_core
M = numpy.random.rand(N, N)
x = numpy.random.rand(N)
y = numpy.zeros_like(x)

def cy_matvec(M, x, y):
    cdef int i, j, n = len(x)
    for i from 0 <= i < n:
        for j from 0 <= j < n:
            y[i] += M[i, j] * x[j]
    return y

cy_matvec(M, x, y) == numpy.dot(M, x)
```

```bash
%timeit numpy.dot(M, x)
```

```
167
```
The Cython implementation here is a bit slower than numpy.dot, but not by much, so if we can use multiple cores with OpenMP it should be possible to beat the performance of numpy.dot.

Now, this implementation is much slower than numpy.dot for this problem size, because of overhead associated with OpenMP and threading, etc. But let’s look at the how the different implementations compare with larger matrix sizes:
For large problem sizes the cython+OpenMP implementation is faster than numpy.dot.

With this simple implementation, the speedup for large problem sizes is about:
Obviously one could do a better job with more effort, since the theoretical limit of the speed-up is:

```
In[52]: N_core
Out[52]: 12
```

8.4.2 Further reading

- http://openmp.org
- http://docs.cython.org/src/userguide/parallelism.html

8.5 OpenCL

OpenCL is an API for heterogenous computing, for example using GPUs for numerical computations. There is a python package called `pyopencl` that allows OpenCL code to be compiled, loaded and executed on the compute units completely from within Python. This is a nice way to work with OpenCL, because the time-consuming computations should be done on the compute units in compiled code, and in this Python only server as a control language.

```
In[53]: %file opencl-dense-mv.py

import pyopencl as cl
import numpy
import time

# problem size
n = 10000

# platform
platform_list = cl.get_platforms()
platform = platform_list[0]

# device
device_list = platform.get_devices()
device = device_list[0]

if False:
    print("Platform name:" + platform.name)
    print("Platform version:" + platform.version)
    print("Device name:" + device.name)
    print("Device type:" + str(device_type.to_string(device.type)))
    print("Device memory:" + str(device.global_mem_size//1024//1024) + ' MB')
    print("Device max clock speed:" + str(device.max_clock_frequency) + ' MHz')
    print("Device compute units:" + str(device.max_compute_units))

# context
ctx = cl.Context([device]) # or we can use cl.create_some_context()

# command queue
queue = cl.CommandQueue(ctx)

# kernel
KERNEL_CODE = ""
```

// Matrix-vector multiplication: \(r = m \cdot v \)

```c
#define N %(mat_size)d
__kernel
void dmv_cl(__global float *m, __global float *v, __global float *r)
{
    int i, gid = get_global_id(0);
    r[gid] = 0;
    for (i = 0; i < N; i++)
    {
        r[gid] += m[gid * N + i] * v[i];
    }
}
```

kernel_params = {"mat_size": n}
program = cl.Program(ctx, KERNEL_CODE % kernel_params).build()

data
A = numpy.random.rand(n, n)
x = numpy.random.rand(n, 1)

host buffers
h_y = numpy.empty(numpy.shape(x)).astype(numpy.float32)
h_A = numpy.real(A).astype(numpy.float32)
h_x = numpy.real(x).astype(numpy.float32)

device buffers
mf = cl.mem_flags
d_A_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_A)
d_x_buf = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=h_x)
d_y_buf = cl.Buffer(ctx, mf.WRITE_ONLY, size=h_y.nbytes)

execute OpenCL code
t0 = time.time()
result = program.dmv_cl(queue, h_y.shape, None, d_A_buf, d_x_buf, d_y_buf)
event.wait()
cl.enqueue_copy(queue, h_y, d_y_buf)
t1 = time.time()

print "opencl elapsed time =", (t1-t0)

Same calculation with numpy
t0 = time.time()
y = numpy.dot(h_A, h_x)
t1 = time.time()

print "numpy elapsed time =", (t1-t0)

see if the results are the same
print "max deviation =", numpy.abs(y-h_y).max()
8.5.1 Further reading

- http://mathema.tician.de/software/pyopencl

8.6 Versions

```
In[55]: %load_ext version_information
%version_information numpy, mpi4py, Cython
```

```
<table>
<thead>
<tr>
<th>Software</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td>3.3.2+ (default, Oct 9 2013, 14:50:09) [GCC 4.8.1]</td>
</tr>
<tr>
<td>IPython</td>
<td>2.0.0-b1</td>
</tr>
<tr>
<td>OS</td>
<td>posix [linux]</td>
</tr>
<tr>
<td>numpy</td>
<td>1.9.0.dev-d4c7c3a</td>
</tr>
<tr>
<td>mpi4py</td>
<td>1.3.1</td>
</tr>
<tr>
<td>Cython</td>
<td>0.20.post0</td>
</tr>
</tbody>
</table>

Mon Mar 17 17:32:10 2014 JST
```
Chapter 9

Revision control software

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/

The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/scientific-python-lectures.

The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

In[13]: from IPython.display import Image

In any software development, one of the most important tools are revision control software (RCS). They are used in virtually all software development and in all environments, by everyone and everywhere (no kidding!)

RCS can used on almost any digital content, so it is not only restricted to software development, and is also very useful for manuscript files, figures, data and notebooks!

9.1 There are two main purposes of RCS systems:

1. Keep track of changes in the source code.
 - Allow reverting back to an older revision if something goes wrong.
 - Work on several “branches” of the software concurrently.
 - Tags revisions to keep track of which version of the software that was used for what (for example, “release-1.0”, “paper-A-final”, …)

2. Make it possible for several people to collaboratively work on the same code base simultaneously.
 - Allow many authors to make changes to the code.
 - Clearly communicating and visualizing changes in the code base to everyone involved.

9.2 Basic principles and terminology for RCS systems

In an RCS, the source code or digital content is stored in a repository.

- The repository does not only contain the latest version of all files, but the complete history of all changes to the files since they were added to the repository.
- A user can checkout the repository, and obtain a local working copy of the files. All changes are made to the files in the local working directory, where files can be added, removed and updated.
- When a task has been completed, the changes to the local files are committed (saved to the repository).
• If someone else has been making changes to the same files, a **conflict** can occur. In many cases conflicts can be **resolved** automatically by the system, but in some cases we might manually have to **merge** different changes together.

• It is often useful to create a new **branch** in a repository, or a **fork** or **clone** of an entire repository, when we doing larger experimental development. The main branch in a repository is called often **master** or **trunk**. When work on a branch or fork is completed, it can be merged in to the master branch/repository.

• With distributed RCSs such as GIT or Mercurial, we can **pull** and **push** changesets between different repositories. For example, between a local copy of there repository to a central online repository (for example on a community repository host site like github.com).

9.2.1 Some good RCS software

In the rest of this lecture we will look at **git**, although **hg** is just as good and work in almost exactly the same way.

9.3 Installing git

On Linux:

```bash
$ sudo apt-get install git
```

On Mac (with macports):

```bash
$ sudo port install git
```

The first time you start to use git, you’ll need to configure your author information:

```bash
$ git config --global user.name 'Robert Johansson'
$ git config --global user.email robert@riken.jp
```

9.4 Creating and cloning a repository

To create a brand new empty repository, we can use the command **git init repository-name**:

```bash
In[4]: # create a new git repository called gitdemo:
   !git init gitdemo
   Reinitialized existing Git repository in /home/rob/Desktop/scientific-python-lectures/gitdemo/.git/
```

If we want to fork or clone an existing repository, we can use the command **git clone repository**:

```bash
In[5]: #!git clone https://github.com/qutip/qutip
Cloning into 'qutip'... 
remote: Counting objects: 7425, done.
remote: Compressing objects: 100% (2013/2013), done.
remote: Total 7425 (delta 5386), reused 7420 (delta 5381)
Receiving objects: 100% (7425/7425), 2.25 MiB | 696 KiB/s, done.
Resolving deltas: 100% (5386/5386), done.
```

Git clone can take a URL to a public repository, like above, or a path to a local directory:
In[6]: `!git clone gitdemo gitdemo2`

Cloning into 'gitdemo2'...
warning: You appear to have cloned an empty repository.
done.

We can also clone private repositories over secure protocols such as SSH:

```
$ git clone ssh://myserver.com/myrepository
```

9.5 Status

Using the command `git status` we get a summary of the current status of the working directory. It shows if we have modified, added or removed files.

In[34]: `!git status`

```
# On branch master
#
# Initial commit
#
# Untracked files:
# (use "git add <file>..." to include in what will be committed)
#
# Lecture-7-Revision-Control-Software.ipynb
nothing added to commit but untracked files present (use "git add" to track)
```

In this case, only the current ipython notebook has been added. It is listed as an untracked file, and is therefore not in the repository yet.

9.6 Adding files and committing changes

To add a new file to the repository, we first create the file and then use the `git add filename` command:

In[35]: `%file README`

```
A file with information about the gitdemo repository.
```

Writing README

In[36]: `!git status`

```
# On branch master
#
# Initial commit
#
# Untracked files:
# (use "git add <file>..." to include in what will be committed)
#
# Lecture-7-Revision-Control-Software.ipynb
# README
nothing added to commit but untracked files present (use "git add" to track)
```

After having added the file `README`, the command `git status` lists it as an `untracked` file.
In[37]:
!git add README

In[38]:
!git status

On branch master
Initial commit
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
new file: README
Untracked files:
(use "git add <file>..." to include in what will be committed)
Lecture-7-Revision-Control-Software.ipynb

Now that it has been added, it is listed as a new file that has not yet been committed to the repository.

In[39]:
!git commit -m "Added a README file" README

[master (root-commit) 1f26ad6] Added a README file
1 file changed, 2 insertions(+)
create mode 100644 README

In[40]:
!git add Lecture-7-Revision-Control-Software.ipynb

In[41]:
!git commit -m "added notebook file" Lecture-7-Revision-Control-Software.ipynb

[master da8b6e9] added notebook file
1 file changed, 2047 insertions(+)
create mode 100644 Lecture-7-Revision-Control-Software.ipynb

In[42]:
!git status

On branch master
nothing to commit (working directory clean)

After committing the change to the repository from the local working directory, git status again reports that working directory is clean.

9.7 Commiting changes

When files that is tracked by GIT are changed, they are listed as modified by git status:

In[43]:
%%file README

A file with information about the gitdemo repository.

A new line.

Overwriting README
Again, we can commit such changes to the repository using the `git commit -m "message"` command.

```
In[45]: !git commit -m "added one more line in README" README
```

```
[master b6db712] added one more line in README
1 file changed, 3 insertions(+), 1 deletion(-)
```

```
In[46]: !git status
```

```
# On branch master
nothing to commit (working directory clean)
```

9.8 Removing files

To remove file that has been added to the repository, use `git rm filename`, which works similar to `git add filename`:

```
In[47]: %%file tmpfile

A short-lived file.

Writing tmpfile
```

Add it:

```
In[48]: !git add tmpfile
```

```
In[49]: !git commit -m "adding file tmpfile" tmpfile
```

```
[master 44ed840] adding file tmpfile
1 file changed, 2 insertions(+)
create mode 100644 tmpfile
```

Remove it again:

```
In[51]: !git rm tmpfile
```

```
rm 'tmpfile'
```

```
In[52]: !git commit -m "remove file tmpfile" tmpfile
```

```
[master a9dc0a4] remove file tmpfile
1 file changed, 2 deletions(-)
delete mode 100644 tmpfile
```
9.9 Commit logs

The messages that are added to the commit command are supposed to give a short (often one-line) description of the changes/additions/deletions in the commit. If the \texttt{-m "message"} is omitted when invoking the \texttt{git commit} message an editor will be opened for you to type a commit message (for example useful when a longer commit message is required).

We can look at the revision log by using the command \texttt{git log}:

\begin{verbatim}
In[53]: !git log

commit a9dc0a4b8e881b6d973be8f7e7b8f1c92393c17
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:41 2012 +0100
remove file tmpfile

commit 44ed84022571c62db55eabd8e8768be6c7784e4
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:31 2012 +0100
adding file tmpfile

commit b6db712506a45a6801c768a6cf6e15e11c62f89
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:26 2012 +0100
added one more line in README

commit da8b6e92b34fe38383dd27a94402ecc121c43
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:20 2012 +0100
added notebook file

commit 1f26ad648a791e266fbb951ef5c49b8d9b90e6461
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:19 2012 +0100
Added a README file
\end{verbatim}

In the commit log, each revision is shown with a timestamp, a unique hash tag that, and author information and the commit message.

9.10 Diffs

All commits results in a changeset, which has a “diff” describing the changes to the file associated with it. We can use \texttt{git diff} so see what has changed in a file:

\begin{verbatim}
In[54]: %%file README

A file with information about the gitdemo repository.

README files usually contains installation instructions, and information about how to get started using

Overwriting README

In[55]: !git diff README
\end{verbatim}
diff --git a/README b/README
index 4f51868..d3951c6 100644
--- a/README
+++ b/README
@@ -1,4 +1,4 @@
A file with information about the gitdemo repository.
-A new line.
+README files usually contain installation instructions, and information about how to get started using
 No newline at end of file
 No newline at end of file

That looks quite cryptic but is a standard form for describing changes in files. We can use other tools, like graphical user interfaces or web based systems to get a more easily understandable diff.

In github (a web-based GIT repository hosting service) it can look like this:

In[24]: Image(filename='images/github-diff.png')

Out[24]:

9.11 Discard changes in the working directory

To discard a change (revert to the latest version in the repository) we can use the checkout command like this:

In[58]: !git checkout -- README
On branch master
nothing to commit (working directory clean)

9.12 Checking out old revisions

If we want to get the code for a specific revision, we can use “git checkout” and giving it the hash code for the revision we are interested as argument:

```sh
In[60]: !git log
```

```
commit a9dc0a4b68e8b1b6d973be8f7e7b8f1c92393c17
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:41 2012 +0100

    remove file tmpfile

commit 44ed840422571c62db55eabdbd8e8768be6c7784e4
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:31 2012 +0100

    adding file tmpfile

commit b6db712506a456a68001c768a6cf6e15e11c62f89
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:26 2012 +0100

    added one more line in README

commit da8b6e92b34fe3838873bd27a94402ecc121c43
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:20 2012 +0100

    added notebook file

commit 1f26ad648a791e266fbb951ef5c49b8d990e6461
Author: Robert Johansson <jrjohansson@gmail.com>
Date: Mon Dec 10 06:54:19 2012 +0100

    Added a README file
```

```sh
In[61]: !git checkout 1f26ad648a791e266fbb951ef5c49b8d990e6461
```

Note: checking out '1f26ad648a791e266fbb951ef5c49b8d990e6461'.

You are in 'detached HEAD' state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may do so (now or later) by using `-b` with the checkout command again. Example:

```sh
git checkout -b new_branch_name
```

HEAD is now at 1f26ad6... Added a README file

Now the content of all the files like in the revision with the hash code listed above (first revision)
A file with information about the gitdemo repository.

We can move back to “the latest” (master) with the command:

```
In[63]: !git checkout master
```

Previous HEAD position was 1f26ad6... Added a README file
Switched to branch 'master'

```
In[64]: !cat README
```

A file with information about the gitdemo repository.

A new line.

```
In[65]: !git status
```

```
# On branch master
nothing to commit (working directory clean)
```

9.13 Tagging and branching

9.13.1 Tags

Tags are named revisions. They are useful for marking particular revisions for later references. For example, we can tag our code with the tag “paper-1-final” when when simulations for “paper-1” are finished and the paper submitted. Then we can always retrieve the exactly the code used for that paper even if we continue to work on and develop the code for future projects and papers.

```
In[66]: !git log
```

```
commit a9dc0a4b68e8b1b6d973be8f7e7b8f1c92393c17
Author: Robert Johansson <jrjohansson@gmail.com>
Date:   Mon Dec 10 06:54:41 2012 +0100
    remove file tmpfile

commit 44ed840422571c62db55eabd8e8768be6c7784e4
Author: Robert Johansson <jrjohansson@gmail.com>
Date:   Mon Dec 10 06:54:31 2012 +0100
    adding file tmpfile

commit b6db712506a45a68001c768a6cf6e15e11c62f89
Author: Robert Johansson <jrjohansson@gmail.com>
Date:   Mon Dec 10 06:54:26 2012 +0100
    added one more line in README

commit da8b6e92b34fe3838873bd27a94402ecs121c43
Author: Robert Johansson <jrjohansson@gmail.com>
Date:   Mon Dec 10 06:54:20 2012 +0100
    added notebook file

commit 1f26ad648a791e266fbb951ef5c49b8d990e6461
Author: Robert Johansson <jrjohansson@gmail.com>
Date:   Mon Dec 10 06:54:19 2012 +0100
    Added a README file
```
To retrieve the code in the state corresponding to a particular tag, we can use the `git checkout` tagname command:

```
$ git checkout demotag1
```

9.14 Branches

With branches we can create diverging code bases in the same repository. They are for example useful for experimental development that requires a lot of code changes that could break the functionality in the master branch. Once the development of a branch has reached a stable state it can always be merged back into the trunk. Branching-development-merging is a good development strategy when serveral people are involved in working on the same code base. But even in single author repositories it can often be useful to always keep the master branch in a working state, and always branch/fork before implementing a new feature, and later merge it back into the main trunk.

In GIT, we can create a new branch like this:

```
In[70]: !git branch expr1
```

We can list the existing branches like this:

```
In[71]: !git branch
```

```
expr1
 master
```

And we can switch between branches using `checkout`:
In[81]: `!git checkout expr1`

Switched to branch 'expr1'

Make a change in the new branch.

In[74]: `%file README`

A file with information about the gitdemo repository. README files usually contains installation instructions, and information about how to get started using the software. Experimental addition.

Overwriting README

In[76]: `!git commit -m "added a line in expr1 branch" README`

[expr1 a6dc24f] added a line in expr1 branch
1 file changed, 3 insertions(+), 1 deletion(-)

In[77]: `!git branch`

* expr1
 master

In[78]: `!git checkout master`

Switched to branch 'master'

In[79]: `!git branch`

expr1
* master

We can merge an existing branch and all its changesets into another branch (for example the master branch) like this:

 First change to the target branch:

In[82]: `!git checkout master`

Switched to branch 'master'

In[83]: `!git merge expr1`

 Updating a9dc0a4..a6dc24f
Fast-forward
 README | 4 +++-
 1 file changed, 3 insertions(+), 1 deletion(-)
We can delete the branch `expr1` now that it has been merged into the master:

```
In[85]: !git branch -d expr1
```

Deleted branch `expr1` (was `a6dc24f`).

```
In[86]: !git branch

* master
```

```
In[88]: !cat README

A file with information about the `gitdemo` repository.

README files usually contain installation instructions, and information about how to get started using
Experimental addition.
```

9.15 Pulling and Pushing Changesets between Repositories

If the repository has been cloned from another repository, for example on `github.com`, it automatically remembers the address of the parent repository (called `origin`):

```
In[5]: !git remote

origin
```

```
In[4]: !git remote show origin

* remote origin  
  Fetch URL: `git@github.com:jrjohansson/scientific-python-lectures.git`  
  Push URL: `git@github.com:jrjohansson/scientific-python-lectures.git`  
  HEAD branch: master  
  Remote branch: master  
  master tracked  
  Local branch configured for 'git pull':  
    master merges with remote master  
  Local ref configured for 'git push':  
    master pushes to master (up to date)
```

9.15.1 Pull

We can retrieve updates from the origin repository by “pulling” changesets from “origin” to our repository:

```
In[6]: !git pull origin

Already up-to-date.
```

We can register addresses to many different repositories, and pull in different changesets from different sources, but the default source is the origin from where the repository was first cloned (and the work `origin` could have been omitted from the line above).
9.15.2 push

After making changes to our local repository, we can push changes to a remote repository using `git push`. Again, the default target repository is `origin`, so we can do:

```
In[7]: !git status

# On branch master
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
#   Lecture-7-Revision-Control-Software.ipynb
nothing added to commit but untracked files present (use "git add" to track)
```

```
In[8]: !git add Lecture-7-Revision-Control-Software.ipynb

```

```
In[9]: !git commit -m "added lecture notebook about RCS" Lecture-7-Revision-Control-Software.ipynb

[master d0d6a70] added lecture notebook about RCS
1 file changed, 2114 insertions(+)
create mode 100644 Lecture-7-Revision-Control-Software.ipynb
```

```
In[11]: !git push

Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 118.94 KiB, done.
Total 3 (delta 1), reused 0 (delta 0)
To git@github.com:jrjohansson/scientific-python-lectures.git
  2495af4..d0d6a70  master -> master
```

9.16 Hosted repositories

Github.com is a git repository hosting site that is very popular with both open source projects (for which it is free) and private repositories (for which a subscription might be needed).

With a hosted repository it easy to collaborate with colleagues on the same code base, and you get a graphical user interface where you can browse the code and look at commit logs, track issues etc.

Some good hosted repositories are

- Github: http://www.github.com
- Bitbucket: http://www.bitbucket.org

```
In[14]: Image(filename='images/github-project-page.png')
```
9.17 Graphical user interfaces

There are also a number of graphical users interfaces for GIT. The available options vary a little bit from platform to platform:

http://git-scm.com/downloads/guis
9.18 Further reading

- http://www.vogella.com/articles/Git/article.html
- http://cheat.errtheblog.com/s/git